MGFN: Multi-Graph Fusion Networks for Urban Region Embedding was accepted by IJCAI-2022.

Related tags

Deep LearningMGFN
Overview

Multi-Graph Fusion Networks for Urban Region Embedding (IJCAI-22)

This is the implementation of Multi-Graph Fusion Networks for Urban Region Embedding (MGFN) in the following paper:

Shangbin Wu#, Xu Yan#, Xiaoliang Fan*, Shirui Pan, Shichao Zhu, Chuanpan Zheng, Ming Cheng, Cheng Wang, Multi-Graph Fusion Networks for Urban Region Embedding, International Joint Conference on Artificial Intelligence (IJCAI-22), July 23-29, 2022 Messe Wien, Vienna, Austria.[Acceptance rate=15%]

Multi-Graph Fusion Networks for Urban Region Embedding (MGFN, https://arxiv.org/pdf/2201.09760.pdf) was accepted by IJCAI-2022.

Table of Contents

Data

Here we provide the processed data. And the Raw Data can be found in: NYC OpenData: https://opendata.cityofnewyork.us/.
We followed the settings in [Zhang et al., 2020] that apply taxi trip data as human mobility data and take the crime count, check-in count, land usage type as prediction tasks, respectively.

Requirements

Python 3.7.9,
pytorch 1.5.1,
numpy 1.19.2,
pandas 0.25.3,
sklearn 0.24.1

QuickStart

run the command below to train the MGFN:

python mgfn.py

These Features are Coming Soon

The code about...

  • Visualization of mobility pattern
  • Generalization ability analysis
  • Data preprocessing

Citation

Please cite our paper in your publications if this code helps your research.

@article{wu2022multi_graph,
  title={Multi-Graph Fusion Networks for Urban Region Embedding},
  author={Wu, Shangbin and Yan, Xu and Fan, Xiaoliang and Pan, Shirui and Zhu, Shichao and Zheng, Chuanpan and Cheng, Ming and Wang, Cheng},
  journal={arXiv preprint arXiv:2201.09760},
  year={2022}
}

Contacts

Shangbin Wu, [email protected]

Xiaoliang Fan (corresponding author), [email protected], https://fanxlxmu.github.io

Reference

[Zhang et al., 2020] Mingyang Zhang, Tong Li, Yong Li, and Pan Hui. Multi-view joint graph representation learning for urban region embedding. In Christian Bessiere, ed- itor, Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI-20, pages 4431–4437. International Joint Conferences on Artificial Intelligence Organization, 7 2020. Special track on AI for CompSust and Human well-being.
Owner
15岁,青春无敌高中生
Cross-Modal Contrastive Learning for Text-to-Image Generation

Cross-Modal Contrastive Learning for Text-to-Image Generation This repository hosts the open source JAX implementation of XMC-GAN. Setup instructions

Google Research 94 Nov 12, 2022
3D mesh stylization driven by a text input in PyTorch

Text2Mesh [Project Page] Text2Mesh is a method for text-driven stylization of a 3D mesh, as described in "Text2Mesh: Text-Driven Neural Stylization fo

Threedle (University of Chicago) 649 Dec 27, 2022
💡 Type hints for Numpy

Type hints with dynamic checks for Numpy! (❒) Installation pip install nptyping (❒) Usage (❒) NDArray nptyping.NDArray lets you define the shape and

Ramon Hagenaars 377 Dec 28, 2022
Watch faces morph into each other with StyleGAN 2, StyleGAN, and DCGAN!

FaceMorpher FaceMorpher is an innovative project to get a unique face morph (or interpolation for geeks) on a website. Yes, this means you can see fac

Anish 9 Jun 24, 2022
The "breathing k-means" algorithm with datasets and example notebooks

The Breathing K-Means Algorithm (with examples) The Breathing K-Means is an approximation algorithm for the k-means problem that (on average) is bette

Bernd Fritzke 75 Nov 17, 2022
A resource for learning about ML, DL, PyTorch and TensorFlow. Feedback always appreciated :)

A resource for learning about ML, DL, PyTorch and TensorFlow. Feedback always appreciated :)

Aladdin Persson 4.7k Jan 08, 2023
Theory-inspired Parameter Control Benchmarks for Dynamic Algorithm Configuration

This repo is for the paper: Theory-inspired Parameter Control Benchmarks for Dynamic Algorithm Configuration The DAC environment is based on the Dynam

Carola Doerr 1 Aug 19, 2022
Simple tutorials using Google's TensorFlow Framework

TensorFlow-Tutorials Introduction to deep learning based on Google's TensorFlow framework. These tutorials are direct ports of Newmu's Theano Tutorial

Nathan Lintz 6k Jan 06, 2023
I3-master-layout - Simple master and stack layout script

Simple master and stack layout script | ------ | ----- | | | | | Ma

Tobias S 18 Dec 05, 2022
code for CVPR paper Zero-shot Instance Segmentation

Code for CVPR2021 paper Zero-shot Instance Segmentation Code requirements python: python3.7 nvidia GPU pytorch1.1.0 GCC =5.4 NCCL 2 the other python

zhengye 86 Dec 13, 2022
Grad2Task: Improved Few-shot Text Classification Using Gradients for Task Representation

Grad2Task: Improved Few-shot Text Classification Using Gradients for Task Representation Prerequisites This repo is built upon a local copy of transfo

Jixuan Wang 10 Sep 28, 2022
The implementation of 'Image synthesis via semantic composition'.

Image synthesis via semantic synthesis [Project Page] by Yi Wang, Lu Qi, Ying-Cong Chen, Xiangyu Zhang, Jiaya Jia. Introduction This repository gives

DV Lab 71 Jan 06, 2023
KSAI Lite is a deep learning inference framework of kingsoft, based on tensorflow lite

KSAI Lite is a deep learning inference framework of kingsoft, based on tensorflow lite

80 Dec 27, 2022
Optimus: the first large-scale pre-trained VAE language model

Optimus: the first pre-trained Big VAE language model This repository contains source code necessary to reproduce the results presented in the EMNLP 2

314 Dec 19, 2022
This repository is all about spending some time the with the original problem posed by Minsky and Papert

This repository is all about spending some time the with the original problem posed by Minsky and Papert. Working through this problem is a great way to begin learning computer vision.

Jaissruti Nanthakumar 1 Jan 23, 2022
[ICCV 2021] Code release for "Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks"

Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks By Yikai Wang, Yi Yang, Fuchun Sun, Anbang Yao. This is the pytorc

Yikai Wang 26 Nov 20, 2022
harmonic-percussive-residual separation algorithm wrapped as a VST3 plugin (iPlug2)

Harmonic-percussive-residual separation plug-in This work is a study on the plausibility of a sines-transients-noise decomposition inspired algorithm

Derp Learning 9 Sep 01, 2022
CTRL-C: Camera calibration TRansformer with Line-Classification

CTRL-C: Camera calibration TRansformer with Line-Classification This repository contains the official code and pretrained models for CTRL-C (Camera ca

57 Nov 14, 2022
An essential implementation of BYOL in PyTorch + PyTorch Lightning

Essential BYOL A simple and complete implementation of Bootstrap your own latent: A new approach to self-supervised Learning in PyTorch + PyTorch Ligh

Enrico Fini 48 Sep 27, 2022
Official implementation of "Learning Proposals for Practical Energy-Based Regression", 2021.

ebms_proposals Official implementation (PyTorch) of the paper: Learning Proposals for Practical Energy-Based Regression, 2021 [arXiv] [project]. Fredr

Fredrik Gustafsson 10 Oct 22, 2022