PyTorch/GPU re-implementation of the paper Masked Autoencoders Are Scalable Vision Learners

Related tags

Deep Learningmae
Overview

Masked Autoencoders: A PyTorch Implementation

This is a PyTorch/GPU re-implementation of the paper Masked Autoencoders Are Scalable Vision Learners:

@Article{MaskedAutoencoders2021,
  author  = {Kaiming He and Xinlei Chen and Saining Xie and Yanghao Li and Piotr Doll{\'a}r and Ross Girshick},
  journal = {arXiv:2111.06377},
  title   = {Masked Autoencoders Are Scalable Vision Learners},
  year    = {2021},
}
  • The original implementation was in TensorFlow+TPU. This re-implementation is in PyTorch+GPU.

  • This repo is a modification on the DeiT repo. Installation and preparation follow that repo.

  • This repo is based on timm==0.3.2, for which a fix is needed to work with PyTorch 1.8.1+.

Catalog

  • Visualization demo
  • Pre-trained checkpoints + fine-tuning code
  • Pre-training code

Visualization demo

Run our interactive visualization demo using Colab notebook (no GPU needed):

Fine-tuning with pre-trained checkpoints

The following table provides the pre-trained checkpoints used in the paper, converted from TF/TPU to PT/GPU:

ViT-Base ViT-Large ViT-Huge
pre-trained checkpoint download download download
md5 8cad7c b8b06e 9bdbb0

The fine-tuning instruction is in FINETUNE.md.

By fine-tuning these pre-trained models, we rank #1 in these classification tasks (detailed in the paper):

ViT-B ViT-L ViT-H ViT-H448 prev best
ImageNet-1K (no external data) 83.6 85.9 86.9 87.8 87.1
following are evaluation of the same model weights (fine-tuned in original ImageNet-1K):
ImageNet-Corruption (error rate) 51.7 41.8 33.8 36.8 42.5
ImageNet-Adversarial 35.9 57.1 68.2 76.7 35.8
ImageNet-Rendition 48.3 59.9 64.4 66.5 48.7
ImageNet-Sketch 34.5 45.3 49.6 50.9 36.0
following are transfer learning by fine-tuning the pre-trained MAE on the target dataset:
iNaturalists 2017 70.5 75.7 79.3 83.4 75.4
iNaturalists 2018 75.4 80.1 83.0 86.8 81.2
iNaturalists 2019 80.5 83.4 85.7 88.3 84.1
Places205 63.9 65.8 65.9 66.8 66.0
Places365 57.9 59.4 59.8 60.3 58.0

Pre-training

The pre-training instruction is in PRETRAIN.md.

License

This project is under the CC-BY-NC 4.0 license. See LICENSE for details.

Owner
Meta Research
Meta Research
Contrastive Learning Inverts the Data Generating Process

Official code to reproduce the results and data presented in the paper Contrastive Learning Inverts the Data Generating Process.

71 Nov 25, 2022
Implementation of "Meta-rPPG: Remote Heart Rate Estimation Using a Transductive Meta-Learner"

Meta-rPPG: Remote Heart Rate Estimation Using a Transductive Meta-Learner This repository is the official implementation of Meta-rPPG: Remote Heart Ra

Eugene Lee 137 Dec 13, 2022
coldcuts is an R package to automatically generate and plot segmentation drawings in R

coldcuts coldcuts is an R package that allows you to draw and plot automatically segmentations from 3D voxel arrays. The name is inspired by one of It

2 Sep 03, 2022
Automated Hyperparameter Optimization Competition

QQ浏览器2021AI算法大赛 - 自动超参数优化竞赛 ACM CIKM 2021 AnalyticCup 在信息流推荐业务场景中普遍存在模型或策略效果依赖于“超参数”的问题,而“超参数"的设定往往依赖人工经验调参,不仅效率低下维护成本高,而且难以实现更优效果。因此,本次赛题以超参数优化为主题,从真

20 Dec 09, 2021
This repository contains the source code for the paper Tutorial on amortized optimization for learning to optimize over continuous domains by Brandon Amos

Tutorial on Amortized Optimization This repository contains the source code for the paper Tutorial on amortized optimization for learning to optimize

Meta Research 144 Dec 26, 2022
Vehicles Counting using YOLOv4 + DeepSORT + Flask + Ngrok

A project for counting vehicles using YOLOv4 + DeepSORT + Flask + Ngrok

Duong Tran Thanh 37 Dec 16, 2022
Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

730 Jan 09, 2023
Implementation of Google Brain's WaveGrad high-fidelity vocoder

WaveGrad Implementation (PyTorch) of Google Brain's high-fidelity WaveGrad vocoder (paper). First implementation on GitHub with high-quality generatio

Ivan Vovk 363 Dec 27, 2022
PyTorch implementation of the implicit Q-learning algorithm (IQL)

Implicit-Q-Learning (IQL) PyTorch implementation of the implicit Q-learning algorithm IQL (Paper) Currently only implemented for online learning. Offl

Sebastian Dittert 27 Dec 30, 2022
LEAP: Learning Articulated Occupancy of People

LEAP: Learning Articulated Occupancy of People Paper | Video | Project Page This is the official implementation of the CVPR 2021 submission LEAP: Lear

Neural Bodies 60 Nov 18, 2022
CVPR 2021: "The Spatially-Correlative Loss for Various Image Translation Tasks"

Spatially-Correlative Loss arXiv | website We provide the Pytorch implementation of "The Spatially-Correlative Loss for Various Image Translation Task

Chuanxia Zheng 89 Jan 04, 2023
For storing the complete exploration of Visual Question Answering for our B.Tech Project

Multi-Image vqa @authors: Akhilesh, Janhavi, Harsh Paper summary, Ideas tried and their corresponding results: on wiki Other discussions: on discussio

Harsh Raj 3 Jun 16, 2022
Object tracking using YOLO and a tracker(KCF, MOSSE, CSRT) in openCV

Object tracking using YOLO and a tracker(KCF, MOSSE, CSRT) in openCV File YOLOv3 weight can be downloaded

Ngoc Quyen Ngo 2 Mar 27, 2022
Implementations of CNNs, RNNs, GANs, etc

Tensorflow Programs and Tutorials This repository will contain Tensorflow tutorials on a lot of the most popular deep learning concepts. It'll also co

Adit Deshpande 1k Dec 30, 2022
MAU: A Motion-Aware Unit for Video Prediction and Beyond, NeurIPS2021

MAU (NeurIPS2021) Zheng Chang, Xinfeng Zhang, Shanshe Wang, Siwei Ma, Yan Ye, Xinguang Xiang, Wen GAo. Official PyTorch Code for "MAU: A Motion-Aware

ZhengChang 20 Nov 25, 2022
Deep Probabilistic Programming Course @ DIKU

Deep Probabilistic Programming Course @ DIKU

52 May 14, 2022
Code for Pose-Controllable Talking Face Generation by Implicitly Modularized Audio-Visual Representation (CVPR 2021)

Pose-Controllable Talking Face Generation by Implicitly Modularized Audio-Visual Representation (CVPR 2021) Hang Zhou, Yasheng Sun, Wayne Wu, Chen Cha

Hang_Zhou 628 Dec 28, 2022
Gym Threat Defense

Gym Threat Defense The Threat Defense environment is an OpenAI Gym implementation of the environment defined as the toy example in Optimal Defense Pol

Hampus Ramström 5 Dec 08, 2022
Simulation of self-focusing of laser beams in condensed media

What is it? Program for scientific research, which allows to simulate the phenomenon of self-focusing of different laser beams (including Gaussian, ri

Evgeny Vasilyev 13 Dec 24, 2022
Offcial repository for the IEEE ICRA 2021 paper Auto-Tuned Sim-to-Real Transfer.

Offcial repository for the IEEE ICRA 2021 paper Auto-Tuned Sim-to-Real Transfer.

47 Jun 30, 2022