PyTorch/GPU re-implementation of the paper Masked Autoencoders Are Scalable Vision Learners

Related tags

Deep Learningmae
Overview

Masked Autoencoders: A PyTorch Implementation

This is a PyTorch/GPU re-implementation of the paper Masked Autoencoders Are Scalable Vision Learners:

@Article{MaskedAutoencoders2021,
  author  = {Kaiming He and Xinlei Chen and Saining Xie and Yanghao Li and Piotr Doll{\'a}r and Ross Girshick},
  journal = {arXiv:2111.06377},
  title   = {Masked Autoencoders Are Scalable Vision Learners},
  year    = {2021},
}
  • The original implementation was in TensorFlow+TPU. This re-implementation is in PyTorch+GPU.

  • This repo is a modification on the DeiT repo. Installation and preparation follow that repo.

  • This repo is based on timm==0.3.2, for which a fix is needed to work with PyTorch 1.8.1+.

Catalog

  • Visualization demo
  • Pre-trained checkpoints + fine-tuning code
  • Pre-training code

Visualization demo

Run our interactive visualization demo using Colab notebook (no GPU needed):

Fine-tuning with pre-trained checkpoints

The following table provides the pre-trained checkpoints used in the paper, converted from TF/TPU to PT/GPU:

ViT-Base ViT-Large ViT-Huge
pre-trained checkpoint download download download
md5 8cad7c b8b06e 9bdbb0

The fine-tuning instruction is in FINETUNE.md.

By fine-tuning these pre-trained models, we rank #1 in these classification tasks (detailed in the paper):

ViT-B ViT-L ViT-H ViT-H448 prev best
ImageNet-1K (no external data) 83.6 85.9 86.9 87.8 87.1
following are evaluation of the same model weights (fine-tuned in original ImageNet-1K):
ImageNet-Corruption (error rate) 51.7 41.8 33.8 36.8 42.5
ImageNet-Adversarial 35.9 57.1 68.2 76.7 35.8
ImageNet-Rendition 48.3 59.9 64.4 66.5 48.7
ImageNet-Sketch 34.5 45.3 49.6 50.9 36.0
following are transfer learning by fine-tuning the pre-trained MAE on the target dataset:
iNaturalists 2017 70.5 75.7 79.3 83.4 75.4
iNaturalists 2018 75.4 80.1 83.0 86.8 81.2
iNaturalists 2019 80.5 83.4 85.7 88.3 84.1
Places205 63.9 65.8 65.9 66.8 66.0
Places365 57.9 59.4 59.8 60.3 58.0

Pre-training

The pre-training instruction is in PRETRAIN.md.

License

This project is under the CC-BY-NC 4.0 license. See LICENSE for details.

Owner
Meta Research
Meta Research
DeepLab-ResNet rebuilt in TensorFlow

DeepLab-ResNet-TensorFlow This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset. Fr

Vladimir 1.2k Nov 04, 2022
190 Jan 03, 2023
Does Oversizing Improve Prosumer Profitability in a Flexibility Market? - A Sensitivity Analysis using PV-battery System

Does Oversizing Improve Prosumer Profitability in a Flexibility Market? - A Sensitivity Analysis using PV-battery System The possibilities to involve

Babu Kumaran Nalini 0 Nov 19, 2021
Source code of "Hold me tight! Influence of discriminative features on deep network boundaries"

Hold me tight! Influence of discriminative features on deep network boundaries This is the source code to reproduce the experiments of the NeurIPS 202

EPFL LTS4 19 Dec 10, 2021
[ICLR 2021] Is Attention Better Than Matrix Decomposition?

Enjoy-Hamburger 🍔 Official implementation of Hamburger, Is Attention Better Than Matrix Decomposition? (ICLR 2021) Under construction. Introduction T

Gsunshine 271 Dec 29, 2022
PyTorch implementation(s) of various ResNet models from Twitch streams.

pytorch-resnet-twitch PyTorch implementation(s) of various ResNet models from Twitch streams. Status: ResNet50 currently not working. Will update in n

Daniel Bourke 3 Jan 11, 2022
Streamlit tool to explore coco datasets

What is this This tool given a COCO annotations file and COCO predictions file will let you explore your dataset, visualize results and calculate impo

Jakub Cieslik 75 Dec 16, 2022
Sequential GCN for Active Learning

Sequential GCN for Active Learning Please cite if using the code: Link to paper. Requirements: python 3.6+ torch 1.0+ pip libraries: tqdm, sklearn, sc

45 Dec 26, 2022
A project studying the influence of communication in multi-objective normal-form games

Communication in Multi-Objective Normal-Form Games This repo consists of five different types of agents that we have used in our study of communicatio

Willem Röpke 0 Dec 17, 2021
A denoising autoencoder + adversarial losses and attention mechanisms for face swapping.

faceswap-GAN Adding Adversarial loss and perceptual loss (VGGface) to deepfakes'(reddit user) auto-encoder architecture. Updates Date Update 2018-08-2

3.2k Dec 30, 2022
Generates all variables from your .tf files into a variables.tf file.

tfvg Generates all variables from your .tf files into a variables.tf file. It searches for every var.variable_name in your .tf files and generates a v

1 Dec 01, 2022
[CVPR 2022 Oral] TubeDETR: Spatio-Temporal Video Grounding with Transformers

TubeDETR: Spatio-Temporal Video Grounding with Transformers Website • STVG Demo • Paper This repository provides the code for our paper. This includes

Antoine Yang 108 Dec 27, 2022
ML course - EPFL Machine Learning Course, Fall 2021

EPFL Machine Learning Course CS-433 Machine Learning Course, Fall 2021 Repository for all lecture notes, labs and projects - resources, code templates

EPFL Machine Learning and Optimization Laboratory 1k Jan 04, 2023
My implementation of Image Inpainting - A deep learning Inpainting model

Image Inpainting What is Image Inpainting Image inpainting is a restorative process that allows for the fixing or removal of unwanted parts within ima

Joshua V Evans 1 Dec 12, 2021
StackRec: Efficient Training of Very Deep Sequential Recommender Models by Iterative Stacking

StackRec: Efficient Training of Very Deep Sequential Recommender Models by Iterative Stacking Datasets You can download datasets that have been pre-pr

25 May 29, 2022
TensorFlow implementation of "Learning from Simulated and Unsupervised Images through Adversarial Training"

Simulated+Unsupervised (S+U) Learning in TensorFlow TensorFlow implementation of Learning from Simulated and Unsupervised Images through Adversarial T

Taehoon Kim 569 Dec 29, 2022
Use .csv files to record, play and evaluate motion capture data.

Purpose These scripts allow you to record mocap data to, and play from .csv files. This approach facilitates parsing of body movement data in statisti

21 Dec 12, 2022
UPSNet: A Unified Panoptic Segmentation Network

UPSNet: A Unified Panoptic Segmentation Network Introduction UPSNet is initially described in a CVPR 2019 oral paper. Disclaimer This repository is te

Uber Research 622 Dec 26, 2022
Compute FID scores with PyTorch.

FID score for PyTorch This is a port of the official implementation of Fréchet Inception Distance to PyTorch. See https://github.com/bioinf-jku/TTUR f

2.1k Jan 06, 2023