Anime Face Detector using mmdet and mmpose

Overview

Anime Face Detector

PyPI version Downloads Open In Colab Hugging Face Spaces

This is an anime face detector using mmdetection and mmpose.

(To avoid copyright issues, I use generated images by the TADNE model here.)

The model detects near-frontal anime faces and predicts 28 landmark points.

The result of k-means clustering of landmarks detected in real images:

The mean images of real images belonging to each cluster:

Installation

pip install openmim
mim install mmcv-full
mim install mmdet
mim install mmpose

pip install anime-face-detector

This package is tested only on Ubuntu.

Usage

Open In Colab

import cv2

from anime_face_detector import create_detector

detector = create_detector('yolov3')
image = cv2.imread('assets/input.jpg')
preds = detector(image)
print(preds[0])
{'bbox': array([2.2450244e+03, 1.5940223e+03, 2.4116030e+03, 1.7458063e+03,
        9.9987185e-01], dtype=float32),
 'keypoints': array([[2.2593938e+03, 1.6680436e+03, 9.3236601e-01],
        [2.2825300e+03, 1.7051841e+03, 8.7208068e-01],
        [2.3412151e+03, 1.7281011e+03, 1.0052248e+00],
        [2.3941377e+03, 1.6825046e+03, 5.9705663e-01],
        [2.4039426e+03, 1.6541921e+03, 8.7139702e-01],
        [2.2625220e+03, 1.6330233e+03, 9.7608268e-01],
        [2.2804077e+03, 1.6408495e+03, 1.0021354e+00],
        [2.2969380e+03, 1.6494972e+03, 9.7812974e-01],
        [2.3357908e+03, 1.6453258e+03, 9.8418534e-01],
        [2.3475276e+03, 1.6355408e+03, 9.5060223e-01],
        [2.3612463e+03, 1.6262626e+03, 9.0553057e-01],
        [2.2682278e+03, 1.6631940e+03, 9.5465249e-01],
        [2.2814783e+03, 1.6616484e+03, 9.0782022e-01],
        [2.2987590e+03, 1.6692812e+03, 9.0256405e-01],
        [2.2833625e+03, 1.6879142e+03, 8.0303693e-01],
        [2.2934949e+03, 1.6909009e+03, 8.9718056e-01],
        [2.3021218e+03, 1.6863715e+03, 9.3882143e-01],
        [2.3471826e+03, 1.6636573e+03, 9.5727938e-01],
        [2.3677822e+03, 1.6540554e+03, 9.4890594e-01],
        [2.3889211e+03, 1.6611255e+03, 9.5125675e-01],
        [2.3575544e+03, 1.6800433e+03, 8.5919142e-01],
        [2.3688926e+03, 1.6800665e+03, 8.3275074e-01],
        [2.3804905e+03, 1.6761322e+03, 8.4160626e-01],
        [2.3165366e+03, 1.6947096e+03, 9.1840971e-01],
        [2.3282458e+03, 1.7104808e+03, 8.8045174e-01],
        [2.3380054e+03, 1.7114034e+03, 8.8357794e-01],
        [2.3485500e+03, 1.7080273e+03, 8.6284375e-01],
        [2.3378748e+03, 1.7118135e+03, 9.7880816e-01]], dtype=float32)}

Pretrained models

Here are the pretrained models. (They will be automatically downloaded when you use them.)

Demo (using Gradio)

Hugging Face Spaces

Run locally

pip install gradio
git clone https://github.com/hysts/anime-face-detector
cd anime-face-detector

python demo_gradio.py

Links

General

Anime face detection

Anime face landmark detection

Others

Comments
  • How do you implement clustering of face landmarks?

    How do you implement clustering of face landmarks?

    Thank you for sharing this wonderful project. I am curious about how do you implement clustering of face landmarks. Can you describe that in detail? Or can you sharing some related papers or projects? Thanks in advance.

    opened by Adenialzz 8
  • Citation Issue

    Citation Issue

    Hi, @hysts

    First of all, thank you so much for the great work!

    I'm a graduate student and have used your pretrained model to generate landmark points as ground truth. I'm currently finishing up my thesis writing and want to cite your github repo.

    I don't known if I overlooked something, but I couldn't find the citation information in the README page. Is there anyway to cite this repo?

    Thank you.

    opened by zeachkstar 2
  • colab notebook encounters problem while installing dependencies

    colab notebook encounters problem while installing dependencies

    Hi, the colab notebook looks broken. I used it about 2 weeks ago with out any problem. Basically in dependcie installing phase, when executing "mim install mmcv-full", colab will ask if I want to use an older version to replace pre-installed newer version. I had to choose to install older version to make the detector works.

    I retried the colab notebook yesterday, this time if I still chose to replace preinstalled v1.5.0 by v.1.4.2, it will stuck at "building wheel for mmcv-full" for 20 mins and fail. If I chose not to replace preinstalled version and skip mmcv-full, the dependcie installing phase could be completed without error. But when I ran the detector, I got an error "KeyError: 'center'"

    Please help.

    KeyError                                  Traceback (most recent call last)
    [<ipython-input-8-2cb6d21c10b9>](https://localhost:8080/#) in <module>()
         12 image = cv2.imread(input)
         13 
    ---> 14 preds = detector(image)
    
    6 frames
    [/content/anime-face-detector/anime_face_detector/detector.py](https://localhost:8080/#) in __call__(self, image_or_path, boxes)
        145                 boxes = [np.array([0, 0, w - 1, h - 1, 1])]
        146         box_list = [{'bbox': box} for box in boxes]
    --> 147         return self._detect_landmarks(image, box_list)
    
    [/content/anime-face-detector/anime_face_detector/detector.py](https://localhost:8080/#) in _detect_landmarks(self, image, boxes)
        101             format='xyxy',
        102             dataset_info=self.dataset_info,
    --> 103             return_heatmap=False)
        104         return preds
        105 
    
    [/usr/local/lib/python3.7/dist-packages/mmcv/utils/misc.py](https://localhost:8080/#) in new_func(*args, **kwargs)
        338 
        339             # apply converted arguments to the decorated method
    --> 340             output = old_func(*args, **kwargs)
        341             return output
        342 
    
    [/usr/local/lib/python3.7/dist-packages/mmpose/apis/inference.py](https://localhost:8080/#) in inference_top_down_pose_model(model, imgs_or_paths, person_results, bbox_thr, format, dataset, dataset_info, return_heatmap, outputs)
        385             dataset_info=dataset_info,
        386             return_heatmap=return_heatmap,
    --> 387             use_multi_frames=use_multi_frames)
        388 
        389         if return_heatmap:
    
    [/usr/local/lib/python3.7/dist-packages/mmpose/apis/inference.py](https://localhost:8080/#) in _inference_single_pose_model(model, imgs_or_paths, bboxes, dataset, dataset_info, return_heatmap, use_multi_frames)
        245                 data['image_file'] = imgs_or_paths
        246 
    --> 247         data = test_pipeline(data)
        248         batch_data.append(data)
        249 
    
    [/usr/local/lib/python3.7/dist-packages/mmpose/datasets/pipelines/shared_transform.py](https://localhost:8080/#) in __call__(self, data)
        105         """
        106         for t in self.transforms:
    --> 107             data = t(data)
        108             if data is None:
        109                 return None
    
    [/usr/local/lib/python3.7/dist-packages/mmpose/datasets/pipelines/top_down_transform.py](https://localhost:8080/#) in __call__(self, results)
        287         joints_3d = results['joints_3d']
        288         joints_3d_visible = results['joints_3d_visible']
    --> 289         c = results['center']
        290         s = results['scale']
        291         r = results['rotation']
    
    KeyError: 'center'
    
    opened by zhongzishi 2
  • Question about the annotation tool for landmark

    Question about the annotation tool for landmark

    Thanks for your great work! May I ask which tool do you use to annotate the landmarks? I find the detector seems to perform not so well on the manga images. So I want to manually annotate some manga images. Besides, when you trained the landmarks detector, did you train the model from scratch or fine-tune on the pretrained mmpose model?

    opened by mrbulb 2
  • Question About Training Dataset

    Question About Training Dataset

    Thanks for your work! It’s very interesting!! May I ask you some questions? Did you manually annotate landmarks for the images generated by the TADNE model? And how many images does your training dataset include?

    opened by GrayNiwako 2
  • how to implement anime face identification with this detector

    how to implement anime face identification with this detector

    Thanks for sharing such a nice work! I was wondering if it is possible to implement anime face identification based on this detector. Do you have any plan on this? Will we have a good identification accuracy using this detector? Many thanks!

    opened by rsindper 1
  • There is an error in demo.ipynb

    There is an error in demo.ipynb

    First of all, thank you for sharing your program.

    Today I tried to run the program in GoogleColab and got the following error in the import anime_face_detector section. Do you know any solutions?

    Thank you.

    ImportError Traceback (most recent call last) in () 5 import numpy as np 6 ----> 7 import anime_face_detector

    7 frames /usr/lib/python3.7/importlib/init.py in import_module(name, package) 125 break 126 level += 1 --> 127 return _bootstrap._gcd_import(name[level:], package, level) 128 129

    ImportError: /usr/local/lib/python3.7/dist-packages/mmcv/_ext.cpython-37m-x86_64-linux-gnu.so: undefined symbol:_ZNK3c1010TensorImpl36is_contiguous_nondefault_policy_implENS_12MemoryFormatE

    opened by 283pm 1
  • Gradio demo on blocks organization

    Gradio demo on blocks organization

    Hi, thanks for making a gradio demo for this on Huggingface https://huggingface.co/spaces/hysts/anime-face-detector, looks great with the new 3.0 design as well. Gradio has a event for the new Blocks API https://huggingface.co/Gradio-Blocks, it would be great if you can join to make a blocks version of this demo or another demo thanks!

    opened by AK391 1
  • Re-thinking anime(Illustration/draw/manga) character face detection

    Re-thinking anime(Illustration/draw/manga) character face detection

    awesome work!

    especially face clustering very neat

    this work reminds me of

    How can Illustration be aligned and what can I do with these 2d landmark?

    Scaling and rotating images and crop: FFHQ aligned code and webtoon result

    Artstation-Artistic-face-HQ which counts as Illustration Use FFHQ aligned

    and new FFHQ aligned https://arxiv.org/abs/2109.09378

    but anime Illustration is not the same as real FFHQ, where perspective-related (pose) means destroying the centre, and local parts exaggeration destroying the global

    [DO.1] directly k-mean dictionary (run a dataset) proximity aligned

    Mention this analysis

    [DO.2] because there are not many features can use, add continuous 2D spatial feature (pred), more point and even beyond

    this need hack model (might proposed)

    [DO.3] Should be used directly as a filter to assist with edge extraction (maximum reserve features)

    guide VAE, SGF generation, or anime cross image Synthesis

    if the purpose is not to train the generation model, probably use is to extend the dataset. if training to generate models, will greatly effect generated eye+chin centre aligned visual lines don't keeping real image features just polylines

    Or need more key points in clustering, det box pts (easy [DO.4]), and beyond to the whole image

    and thank for your reading this

    opened by koke2c95 1
  • add polylines visualize and video test on colab demo.ipynb

    add polylines visualize and video test on colab demo.ipynb

    result

    polylines visualize test

    by MPEG encoded that can't play properly (transcoded)

    https://user-images.githubusercontent.com/26929386/141799892-0b496ada-66b4-4349-ab72-49aae2317ce4.mp4

    comments

    • not yet tested on gpu

    • cleared all output

    • didn't remove function detect , just copy the from demo_gradio.py

    • polylines visualize function can be simplified

    • polylines visualize function can be customize (color, thickness, groups)

    opened by koke2c95 1
MILK: Machine Learning Toolkit

MILK: MACHINE LEARNING TOOLKIT Machine Learning in Python Milk is a machine learning toolkit in Python. Its focus is on supervised classification with

Luis Pedro Coelho 610 Dec 14, 2022
Checkout some cool self-projects you can try your hands on to curb your boredom this December!

SoC-Winter Checkout some cool self-projects you can try your hands on to curb your boredom this December! These are short projects that you can do you

Web and Coding Club, IIT Bombay 29 Nov 08, 2022
Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification

Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification

258 Dec 29, 2022
A hand tracking demo made with mediapipe where you can control lights with pinching your fingers and moving your hand up/down.

HandTrackingBrightnessControl A hand tracking demo made with mediapipe where you can control lights with pinching your fingers and moving your hand up

Teemu Laurila 19 Feb 12, 2022
The code of paper "Block Modeling-Guided Graph Convolutional Neural Networks".

Block Modeling-Guided Graph Convolutional Neural Networks This repository contains the demo code of the paper: Block Modeling-Guided Graph Convolution

22 Dec 08, 2022
A method that utilized Generative Adversarial Network (GAN) to interpret the black-box deep image classifier models by PyTorch.

A method that utilized Generative Adversarial Network (GAN) to interpret the black-box deep image classifier models by PyTorch.

Yunxia Zhao 3 Dec 29, 2022
torchsummaryDynamic: support real FLOPs calculation of dynamic network or user-custom PyTorch ops

torchsummaryDynamic Improved tool of torchsummaryX. torchsummaryDynamic support real FLOPs calculation of dynamic network or user-custom PyTorch ops.

Bohong Chen 1 Jan 07, 2022
Yolo object detection - Yolo object detection with python

How to run download required files make build_image make download Docker versio

3 Jan 26, 2022
Line-level Handwritten Text Recognition (HTR) system implemented with TensorFlow.

Line-level Handwritten Text Recognition with TensorFlow This model is an extended version of the Simple HTR system implemented by @Harald Scheidl and

Hoàng Tùng Lâm (Linus) 72 May 07, 2022
Experiment about Deep Person Re-identification with EfficientNet-v2

We evaluated the baseline with Resnet50 and Efficienet-v2 without using pretrained models. Also Resnet50-IBN-A and Efficientnet-v2 using pretrained on ImageNet. We used two datasets: Market-1501 and

lan.nguyen2k 77 Jan 03, 2023
Implementation for Simple Spectral Graph Convolution in ICLR 2021

Simple Spectral Graph Convolutional Overview This repo contains an example implementation of the Simple Spectral Graph Convolutional (S^2GC) model. Th

allenhaozhu 64 Dec 31, 2022
Code for "Steerable Pyramid Transform Enables Robust Left Ventricle Quantification"

Code for "Steerable Pyramid Transform Enables Robust Left Ventricle Quantification" This is an end-to-end framework for accurate and robust left ventr

2 Jul 09, 2022
CLNTM - Contrastive Learning for Neural Topic Model

Contrastive Learning for Neural Topic Model This repository contains the impleme

Thong Thanh Nguyen 25 Nov 24, 2022
Code base for "On-the-Fly Test-time Adaptation for Medical Image Segmentation"

On-the-Fly Adaptation Official Pytorch Code base for On-the-Fly Test-time Adaptation for Medical Image Segmentation Paper Introduction One major probl

Jeya Maria Jose 17 Nov 10, 2022
LowRankModels.jl is a julia package for modeling and fitting generalized low rank models.

LowRankModels.jl LowRankModels.jl is a Julia package for modeling and fitting generalized low rank models (GLRMs). GLRMs model a data array by a low r

Madeleine Udell 183 Dec 17, 2022
RSNA Intracranial Hemorrhage Detection with python

RSNA Intracranial Hemorrhage Detection This is the source code for the first place solution to the RSNA2019 Intracranial Hemorrhage Detection Challeng

24 Nov 30, 2022
Blind Image Super-resolution with Elaborate Degradation Modeling on Noise and Kernel

Blind Image Super-resolution with Elaborate Degradation Modeling on Noise and Kernel This repository is the official PyTorch implementation of BSRDM w

Zongsheng Yue 69 Jan 05, 2023
The official repo of the CVPR 2021 paper Group Collaborative Learning for Co-Salient Object Detection .

GCoNet The official repo of the CVPR 2021 paper Group Collaborative Learning for Co-Salient Object Detection . Trained model Download final_gconet.pth

Qi Fan 46 Nov 17, 2022
Official implementation of the paper "Lightweight Deep CNN for Natural Image Matting via Similarity Preserving Knowledge Distillation"

Lightweight-Deep-CNN-for-Natural-Image-Matting-via-Similarity-Preserving-Knowledge-Distillation Introduction Accepted at IEEE Signal Processing Letter

DongGeun-Yoon 19 Jun 07, 2022
A tutorial showing how to train, convert, and run TensorFlow Lite object detection models on Android devices, the Raspberry Pi, and more!

A tutorial showing how to train, convert, and run TensorFlow Lite object detection models on Android devices, the Raspberry Pi, and more!

Evan 1.3k Jan 02, 2023