Open-L2O: A Comprehensive and Reproducible Benchmark for Learning to Optimize Algorithms

Overview

Open-L2O

This repository establishes the first comprehensive benchmark efforts of existing learning to optimize (L2O) approaches on a number of problems and settings. We release our software implementation and data as the Open-L2O package, for reproducible research and fair benchmarking in the L2O field. [Paper]

License: MIT

Overview

What is learning to optimize (L2O)?

L2O (Learning to optimize) aims to replace manually designed analytic optimization algorithms (SGD, RMSProp, Adam, etc.) with learned update rules.

How does L2O work?

L2O serves as functions that can be fit from data. L2O gains experience from training optimization tasks in a principled and automatic way.

What can L2O do for you?

L2O is particularly suitable for solving a certain type of optimization over a specific distribution of data repeatedly. In comparison to classic methods, L2O is shown to find higher-quality solutions and/or with much faster convergence speed for many problems.

Open questions for research?

  • There are significant theoretical and practicality gaps between manually designed optimizers and existing L2O models.

Main Results

Learning to optimize sparse recovery

Learning to optimize Lasso functions

Learning to optimize non-convex Rastrigin functions

Learning to optimize neural networks

Supported Model-base Learnable Optimizers

All codes are available at here.

  1. LISTA (feed-forward form) from Learning fast approximations of sparse coding [Paper]
  2. LISTA-CP from Theoretical Linear Convergence of Unfolded ISTA and its Practical Weights and Thresholds [Paper]
  3. LISTA-CPSS from Theoretical Linear Convergence of Unfolded ISTA and its Practical Weights and Thresholds [Paper]
  4. LFISTA from Understanding Trainable Sparse Coding via Matrix Factorization [Paper]
  5. LAMP from AMP-Inspired Deep Networks for Sparse Linear Inverse Problems [Paper]
  6. ALISTA from ALISTA: Analytic Weights Are As Good As Learned Weights in LISTA [Paper]
  7. GLISTA from Sparse Coding with Gated Learned ISTA [Paper]

Supported Model-free Learnable Optimizers

  1. L2O-DM from Learning to learn by gradient descent by gradient descent [Paper] [Code]
  2. L2O-RNNProp Learning Gradient Descent: Better Generalization and Longer Horizons from [Paper] [Code]
  3. L2O-Scale from Learned Optimizers that Scale and Generalize [Paper] [Code]
  4. L2O-enhanced from Training Stronger Baselines for Learning to Optimize [Paper] [Code]
  5. L2O-Swarm from Learning to Optimize in Swarms [Paper] [Code]
  6. L2O-Jacobian from HALO: Hardware-Aware Learning to Optimize [Paper] [Code]
  7. L2O-Minmax from Learning A Minimax Optimizer: A Pilot Study [Paper] [Code]

Supported Optimizees

Convex Functions:

  • Quadratic
  • Lasso

Non-convex Functions:

  • Rastrigin

Minmax Functions:

  • Saddle
  • Rotated Saddle
  • Seesaw
  • Matrix Game

Neural Networks:

  • MLPs on MNIST
  • ConvNets on MNIST and CIFAR-10
  • LeNet
  • NAS searched archtectures

Other Resources

  • This is a Pytorch implementation of L2O-DM. [Code]
  • This is the original L2O-Swarm repository. [Code]
  • This is the original L2O-Jacobian repository. [Code]

Future Works

  • TF2.0 Implementated toolbox v2 with a unified framework and lib dependency.

Cite

@misc{chen2021learning,
      title={Learning to Optimize: A Primer and A Benchmark}, 
      author={Tianlong Chen and Xiaohan Chen and Wuyang Chen and Howard Heaton and Jialin Liu and Zhangyang Wang and Wotao Yin},
      year={2021},
      eprint={2103.12828},
      archivePrefix={arXiv},
      primaryClass={math.OC}
}
Owner
VITA
Visual Informatics Group @ University of Texas at Austin
VITA
PyTorch code for Composing Partial Differential Equations with Physics-Aware Neural Networks

FInite volume Neural Network (FINN) This repository contains the PyTorch code for models, training, and testing, and Python code for data generation t

Cognitive Modeling 20 Dec 18, 2022
A forwarding MPI implementation that can use any other MPI implementation via an MPI ABI

MPItrampoline MPI wrapper library: MPI trampoline library: MPI integration tests: MPI is the de-facto standard for inter-node communication on HPC sys

Erik Schnetter 31 Dec 22, 2022
PyTorch implementation of the TTC algorithm

Trust-the-Critics This repository is a PyTorch implementation of the TTC algorithm and the WGAN misalignment experiments presented in Trust the Critic

0 Nov 29, 2021
Code for "Human Pose Regression with Residual Log-likelihood Estimation", ICCV 2021 Oral

Human Pose Regression with Residual Log-likelihood Estimation [Paper] [arXiv] [Project Page] Human Pose Regression with Residual Log-likelihood Estima

JeffLi 347 Dec 24, 2022
[RSS 2021] An End-to-End Differentiable Framework for Contact-Aware Robot Design

DiffHand This repository contains the implementation for the paper An End-to-End Differentiable Framework for Contact-Aware Robot Design (RSS 2021). I

Jie Xu 60 Jan 04, 2023
AttentionGAN for Unpaired Image-to-Image Translation & Multi-Domain Image-to-Image Translation

AttentionGAN-v2 for Unpaired Image-to-Image Translation AttentionGAN-v2 Framework The proposed generator learns both foreground and background attenti

Hao Tang 530 Dec 27, 2022
Constrained Logistic Regression - How to apply specific constraints to logistic regression's coefficients

Constrained Logistic Regression Sample implementation of constructing a logistic regression with given ranges on each of the feature's coefficients (v

1 Dec 29, 2021
SGoLAM - Simultaneous Goal Localization and Mapping

SGoLAM - Simultaneous Goal Localization and Mapping PyTorch implementation of the MultiON runner-up entry, SGoLAM: Simultaneous Goal Localization and

10 Jan 05, 2023
Weakly-supervised semantic image segmentation with CNNs using point supervision

Code for our ECCV paper What's the Point: Semantic Segmentation with Point Supervision. Summary This library is a custom build of Caffe for semantic i

27 Sep 14, 2022
WSDM‘2022: Knowledge Enhanced Sports Game Summarization

Knowledge Enhanced Sports Game Summarization Cooming Soon! :) Data will be released after approval process. Code will be published once the author of

Jiaan Wang 14 Jul 13, 2022
PerfFuzz: Automatically Generate Pathological Inputs for C/C++ programs

PerfFuzz Performance problems in software can arise unexpectedly when programs are provided with inputs that exhibit pathological behavior. But how ca

Caroline Lemieux 125 Nov 18, 2022
Learning multiple gaits of quadruped robot using hierarchical reinforcement learning

Learning multiple gaits of quadruped robot using hierarchical reinforcement learning We propose a method to learn multiple gaits of quadruped robot us

Yunho Kim 17 Dec 11, 2022
Code release for NeRF (Neural Radiance Fields)

NeRF: Neural Radiance Fields Project Page | Video | Paper | Data Tensorflow implementation of optimizing a neural representation for a single scene an

6.5k Jan 01, 2023
JAXMAPP: JAX-based Library for Multi-Agent Path Planning in Continuous Spaces

JAXMAPP: JAX-based Library for Multi-Agent Path Planning in Continuous Spaces JAXMAPP is a JAX-based library for multi-agent path planning (MAPP) in c

OMRON SINIC X 24 Dec 28, 2022
Using Self-Supervised Pretext Tasks for Active Learning - Official Pytorch Implementation

Using Self-Supervised Pretext Tasks for Active Learning - Official Pytorch Implementation Experiment Setting: CIFAR10 (downloaded and saved in ./DATA

John Seon Keun Yi 38 Dec 27, 2022
Code for "PVNet: Pixel-wise Voting Network for 6DoF Pose Estimation" CVPR 2019 oral

Good news! We release a clean version of PVNet: clean-pvnet, including how to train the PVNet on the custom dataset. Use PVNet with a detector. The tr

ZJU3DV 722 Dec 27, 2022
Implementation of ResMLP, an all MLP solution to image classification, in Pytorch

ResMLP - Pytorch Implementation of ResMLP, an all MLP solution to image classification out of Facebook AI, in Pytorch Install $ pip install res-mlp-py

Phil Wang 178 Dec 02, 2022
JUSTICE: A Benchmark Dataset for Supreme Court’s Judgment Prediction

JUSTICE: A Benchmark Dataset for Supreme Court’s Judgment Prediction CSCI 544 Final Project done by: Mohammed Alsayed, Shaayan Syed, Mohammad Alali, S

Smit Patel 3 Dec 28, 2022
Official Pytorch Implementation of Relational Self-Attention: What's Missing in Attention for Video Understanding

Relational Self-Attention: What's Missing in Attention for Video Understanding This repository is the official implementation of "Relational Self-Atte

mandos 43 Dec 07, 2022
A PyTorch implementation of SIN: Superpixel Interpolation Network

SIN: Superpixel Interpolation Network This is is a PyTorch implementation of the superpixel segmentation network introduced in our PRICAI-2021 paper:

6 Sep 28, 2022