[RSS 2021] An End-to-End Differentiable Framework for Contact-Aware Robot Design

Overview

DiffHand

This repository contains the implementation for the paper An End-to-End Differentiable Framework for Contact-Aware Robot Design (RSS 2021).

In this paper, we propose a fully differentiable pipeline to jointly optimize the morphology and control of manipulator robots. At the core of the framework is a deformation-based morphology parameterization and a differentiable simulation.

The framework itself is general and not limited to manipulator robots, we select the case study of manipulator robots because of its complexity and contact-rich nature. Welcome to try our code on any other types robots as well.

teaser

Installation

We provides two methods for installation of the code. Install on local machine and Install by Docker.

Option 1: Install on Local Machine

Operating System: tested on Ubuntu 16.04 and Ubuntu 18.04

  1. Clone the project from github: git clone https://github.com/eanswer/DiffHand.git --recursive .

  2. Install CMake >= 3.1.0: official instruction for cmake installation

  3. build conda environment and install simulation

    cd DiffHand
    conda env create -f environment.yml
    conda activate diffhand
    cd core
    python setup.py install
    
  4. Test the installation

    cd examples
    python test_redmax.py
    

    If you see a simulation rendering with a two-link pendulum as below, you have successfully installed the code base.

    test_redmax

Option 2: Install by Docker

We provide a docker installation in the docker folder. Follow the readme instruction in docker folder to complete the installation.

Code Structure

There are two main components of the code base:

  • Differentiable RedMax: DiffHand/core. The differentiable redmax is based off RedMax and further makes if fully differentiable. It provides the simulation derivatives w.r.t. both simulation parameters (kinematics- and dynamics-related parameter) and control actions. It is implemented in C++ for computing efficiency. We provide a simulation document for mathematical details of our differentiable RedMax.
  • Morphology and Control Co-Optimization: DiffHand/examples. We build an end-to-end differentiable framework to co-optimize both the morphology and control of manipulators. We use L-BFGS-B as our default gradient-based optimizer and also provides the source code for the gradient-free baseline methods.

Run the Code

It is recommended to try out the scripts in play with redmax simulation first if you would like to get familiar with simulation interface.

Run the examples in the paper

We include the four co-design tasks from the paper in the examples folder.

  • Finger Reach
  • Rotate Cube
  • Flip Box
  • Assemble

To run the L-BFGS-B optimization with our deformation-based design parameterization, you can enter the corresponding folder and run demo.sh under the folder. For example, to run Finger Reach,

cd examples/rss_finger_reach
bash demo.sh

Run batch experiments of baseline algorithms

We include the gradient-free baselines (except RL) and the control-only baseline in this repository. For the RL baseline, we use the released code from Luck et al with some modifications to our proposed morphology parameterization.

To run the baseline algorithms or our method in a batch mode, enter the corresponding folder and run run_batch_experiments.py. For example, to run Flip Cube with CMA-ES,

cd examples/rss_finger_flip
python run_batch_experiments.py --method CMA --num-seeds 5 --num-processes 5 --save-dir ./results/

Play with redmax simulation

We provide several examples to test the forward simulation and its differentiability.

  • examples/test_redmax.py provides the script to show how to run forward simulation and rendering. It can be easily executed by:

    python test_redmax.py --model hand_sphere
    

    Here, you can also try other models provided in assets folder (models are described by xml configuration files).

  • examples/test_finger_flick_optimize.py provides an example for using the backward gradients of the simulation. In this example, we use gradient-based optimization to optimize the control sequence of a pendulum finger model to flick a cube to a target location. run it by:

    python test_finger_flick_optimize.py
    

    The initial control sequence is shown first and you can press [Esc] to close the rendering and start the optimization. After successful optimization, you will see a rendering as below:

    finger_flick

Citation

If you find our paper or code is useful, please consider citing:

@INPROCEEDINGS{Xu-RSS-21, 
    AUTHOR    = {Jie Xu AND Tao Chen AND Lara Zlokapa AND Michael Foshey AND Wojciech Matusik AND Shinjiro Sueda AND Pulkit Agrawal}, 
    TITLE     = {{An End-to-End Differentiable Framework for Contact-Aware Robot Design}}, 
    BOOKTITLE = {Proceedings of Robotics: Science and Systems}, 
    YEAR      = {2021}, 
    ADDRESS   = {Virtual}, 
    MONTH     = {July}, 
    DOI       = {10.15607/RSS.2021.XVII.008} 
} 
You might also like...
CPF: Learning a Contact Potential Field to Model the Hand-object Interaction
CPF: Learning a Contact Potential Field to Model the Hand-object Interaction

Contact Potential Field This repo contains model, demo, and test codes of our paper: CPF: Learning a Contact Potential Field to Model the Hand-object

Spatial Action Maps for Mobile Manipulation (RSS 2020)
Spatial Action Maps for Mobile Manipulation (RSS 2020)

spatial-action-maps Update: Please see our new spatial-intention-maps repository, which extends this work to multi-agent settings. It contains many ne

[WACV 2020] Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints

Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints Official implementation for Reducing Footskate in Human Motion Recon

Repository for the paper
Repository for the paper "Online Domain Adaptation for Occupancy Mapping", RSS 2020

RSS 2020 - Online Domain Adaptation for Occupancy Mapping Repository for the paper "Online Domain Adaptation for Occupancy Mapping", Robotics: Science

Real-Time Multi-Contact Model Predictive Control via ADMM

Here, you can find the code for the paper 'Real-Time Multi-Contact Model Predictive Control via ADMM'. Code is currently being cleared up and optimize

Python program that works as a contact list

Lista de Contatos Programa em Python que funciona como uma lista de contatos. Features Adicionar novo contato Remover contato Atualizar contato Pesqui

Official implementation of
Official implementation of "Learning Forward Dynamics Model and Informed Trajectory Sampler for Safe Quadruped Navigation" (RSS 2022)

Intro Official implementation of "Learning Forward Dynamics Model and Informed Trajectory Sampler for Safe Quadruped Navigation" Robotics:Science and

An end-to-end PyTorch framework for image and video classification
An end-to-end PyTorch framework for image and video classification

What's New: March 2021: Added RegNetZ models November 2020: Vision Transformers now available, with training recipes! 2020-11-20: Classy Vision v0.5 R

"SOLQ: Segmenting Objects by Learning Queries", SOLQ is an end-to-end instance segmentation framework with Transformer.

SOLQ: Segmenting Objects by Learning Queries This repository is an official implementation of the paper SOLQ: Segmenting Objects by Learning Queries.

Comments
  • Simulation replay takes forever

    Simulation replay takes forever

    Thank you for the great work!

    I am trying to get familiar with RedMaxDiff and noticed that rendering simulated trajectories takes forever (<=1 fps for hand-sphere). Whereas, simulating itself is very fast (471 fps for hand-sphere and 10k+ fps for finger-torque).

    Is that normal? Am I doing something wrong?

    Best, Mikel

    opened by jotix16 0
Releases(DiffHand)
The repository for the paper "When Do You Need Billions of Words of Pretraining Data?"

pretraining-learning-curves This is the repository for the paper When Do You Need Billions of Words of Pretraining Data? Edge Probing We use jiant1 fo

ML² AT CILVR 19 Nov 25, 2022
Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.

Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.

Octavio Arriaga 5.3k Dec 30, 2022
The code repository for "RCNet: Reverse Feature Pyramid and Cross-scale Shift Network for Object Detection" (ACM MM'21)

RCNet: Reverse Feature Pyramid and Cross-scale Shift Network for Object Detection (ACM MM'21) By Zhuofan Zong, Qianggang Cao, Biao Leng Introduction F

TempleX 9 Jul 30, 2022
Cosine Annealing With Warmup

CosineAnnealingWithWarmup Formulation The learning rate is annealed using a cosine schedule over the course of learning of n_total total steps with an

zhuyun 4 Apr 18, 2022
Similarity-based Gray-box Adversarial Attack Against Deep Face Recognition

Similarity-based Gray-box Adversarial Attack Against Deep Face Recognition Introduction Run attack: SGADV.py Objective function: foolbox/attacks/gradi

1 Jul 18, 2022
A Number Recognition algorithm

Paddle-VisualAttention Results_Compared SVHN Dataset Methods Steps GPU Batch Size Learning Rate Patience Decay Step Decay Rate Training Speed (FPS) Ac

1 Nov 12, 2021
A deep learning network built with TensorFlow and Keras to classify gender and estimate age.

Convolutional Neural Network (CNN). This repository contains a source code of a deep learning network built with TensorFlow and Keras to classify gend

Pawel Dziemiach 1 Dec 18, 2021
Implementation of Bagging and AdaBoost Algorithm

Bagging-and-AdaBoost Implementation of Bagging and AdaBoost Algorithm Dataset Red Wine Quality Data Sets For simplicity, we will have 2 classes of win

Zechen Ma 1 Nov 01, 2021
LIAO Shuiying 6 Dec 01, 2022
YOLO5Face: Why Reinventing a Face Detector (https://arxiv.org/abs/2105.12931)

Introduction Yolov5-face is a real-time,high accuracy face detection. Performance Single Scale Inference on VGA resolution(max side is equal to 640 an

DeepCam Shenzhen 1.4k Jan 07, 2023
This is an open-source toolkit for Heterogeneous Graph Neural Network(OpenHGNN) based on DGL [Deep Graph Library] and PyTorch.

This is an open-source toolkit for Heterogeneous Graph Neural Network(OpenHGNN) based on DGL [Deep Graph Library] and PyTorch.

BUPT GAMMA Lab 519 Jan 02, 2023
3D-printable hand-strapped keyboard

Note: This repo has not been cleaned up and prepared for general consumption at all. This is just a dump of the project files. If there is any interes

Wojciech Baranowski 41 Dec 31, 2022
source code for 'Finding Valid Adjustments under Non-ignorability with Minimal DAG Knowledge' by A. Shah, K. Shanmugam, K. Ahuja

Source code for "Finding Valid Adjustments under Non-ignorability with Minimal DAG Knowledge" Reference: Abhin Shah, Karthikeyan Shanmugam, Kartik Ahu

Abhin Shah 1 Jun 03, 2022
Deep Learning and Logical Reasoning from Data and Knowledge

Logic Tensor Networks (LTN) Logic Tensor Network (LTN) is a neurosymbolic framework that supports querying, learning and reasoning with both rich data

171 Dec 29, 2022
Towards Open-World Feature Extrapolation: An Inductive Graph Learning Approach

This repository holds the implementation for paper Towards Open-World Feature Extrapolation: An Inductive Graph Learning Approach Download our preproc

Qitian Wu 42 Dec 27, 2022
House_prices_kaggle - Predict sales prices and practice feature engineering, RFs, and gradient boosting

House Prices - Advanced Regression Techniques Predicting House Prices with Machine Learning This project is build to enhance my knowledge about machin

Gurpreet Singh 1 Jan 01, 2022
Unofficial implementation of the ImageNet, CIFAR 10 and SVHN Augmentation Policies learned by AutoAugment using pillow

AutoAugment - Learning Augmentation Policies from Data Unofficial implementation of the ImageNet, CIFAR10 and SVHN Augmentation Policies learned by Au

Philip Popien 1.3k Jan 02, 2023
Educational API for 3D Vision using pose to control carton.

Educational API for 3D Vision using pose to control carton.

41 Jul 10, 2022
Official PyTorch implementation of the NeurIPS 2021 paper StyleGAN3

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Eugenio Herrera 92 Nov 18, 2022
PyTorch implementation of an end-to-end Handwritten Text Recognition (HTR) system based on attention encoder-decoder networks

AttentionHTR PyTorch implementation of an end-to-end Handwritten Text Recognition (HTR) system based on attention encoder-decoder networks. Scene Text

Dmitrijs Kass 31 Dec 22, 2022