Constrained Logistic Regression - How to apply specific constraints to logistic regression's coefficients

Overview

Constrained Logistic Regression

Sample implementation of constructing a logistic regression with given ranges on each of the feature's coefficients (via clogistic library).

The Data

We will use the processed version of telco customer churn data from Kaggle. The data can be downloaded here.

Steps

Define the constraints

For example:

# define constraints as dataframe
import numpy as np
constraint_df = pd.DataFrame(data=[
                                   ['gender',-np.inf,np.inf],
                                   ['SeniorCitizen',-np.inf,np.inf],
                                   ['Partner',-np.inf, 0],
                                   ['Dependents',-np.inf,0],
                                   ['tenure',-np.inf,0],
                                   ['PhoneService',-np.inf,0],
                                   ['PaperlessBilling',-np.inf,np.inf],
                                   ['MonthlyCharges',-np.inf,np.inf],
                                   ['intercept',-np.inf,np.inf]],
                             columns=['feature','lower_bound','upper_bound'])
constraint_df
|    | feature          |   lower_bound |   upper_bound |
|---:|:-----------------|--------------:|--------------:|
|  0 | gender           |          -inf |           inf |
|  1 | SeniorCitizen    |          -inf |           inf |
|  2 | Partner          |          -inf |             0 |
|  3 | Dependents       |          -inf |             0 |
|  4 | tenure           |          -inf |             0 |
|  5 | PhoneService     |          -inf |             0 |
|  6 | PaperlessBilling |          -inf |           inf |
|  7 | MonthlyCharges   |          -inf |           inf |
|  8 | intercept        |          -inf |           inf |

Model training via clogistic

# train using clogistic
from scipy.optimize import Bounds
from clogistic import LogisticRegression as clLogisticRegression

lower_bounds = constraint_df['lower_bound'].to_numpy()
upper_bounds = constraint_df['upper_bound'].to_numpy()
bounds = Bounds(lower_bounds, upper_bounds)

cl_logreg = clLogisticRegression(penalty='none')
cl_logreg.fit(X_train, y_train, bounds=bounds)

Retrieve the model coefficients

# coefficients as dataframe
cl_coef = pd.DataFrame({
    'feature': df.drop(columns='Churn').columns.tolist() + ['intercept'],
    'coefficient': list(cl_logreg.coef_[0]) + [cl_logreg.intercept_[0]]
})

cl_coef
|    | feature          |   coefficient |
|---:|:-----------------|--------------:|
|  0 | gender           |   0.0184168   |
|  1 | SeniorCitizen    |   0.506692    |
|  2 | Partner          |   3.85603e-09 |
|  3 | Dependents       |  -0.35721     |
|  4 | tenure           |  -0.0557211   |
|  5 | PhoneService     |  -0.796233    |
|  6 | PaperlessBilling |   0.398824    |
|  7 | MonthlyCharges   |   0.033197    |
|  8 | intercept        |  -1.36086     |
Unofficial PyTorch Implementation for HifiFace (https://arxiv.org/abs/2106.09965)

HifiFace — Unofficial Pytorch Implementation Image source: HifiFace: 3D Shape and Semantic Prior Guided High Fidelity Face Swapping (figure 1, pg. 1)

MINDs Lab 218 Jan 04, 2023
ICCV2021 - Mining Contextual Information Beyond Image for Semantic Segmentation

Introduction The official repository for "Mining Contextual Information Beyond Image for Semantic Segmentation". Our full code has been merged into ss

55 Nov 09, 2022
A universal framework for learning timestamp-level representations of time series

TS2Vec This repository contains the official implementation for the paper Learning Timestamp-Level Representations for Time Series with Hierarchical C

Zhihan Yue 284 Dec 30, 2022
🏆 The 1st Place Submission to AICity Challenge 2021 Natural Language-Based Vehicle Retrieval Track (Alibaba-UTS submission)

AI City 2021: Connecting Language and Vision for Natural Language-Based Vehicle Retrieval 🏆 The 1st Place Submission to AICity Challenge 2021 Natural

82 Dec 29, 2022
PyTorch implementation of VAGAN: Visual Feature Attribution Using Wasserstein GANs

Prototypical Networks for Few shot Learning in PyTorch Simple alternative Implementation of Prototypical Networks for Few Shot Learning (paper, code)

Orobix 93 Aug 17, 2022
GUI for a Vocal Remover that uses Deep Neural Networks.

GUI for a Vocal Remover that uses Deep Neural Networks.

4.4k Jan 07, 2023
Code for "Diversity can be Transferred: Output Diversification for White- and Black-box Attacks"

Output Diversified Sampling (ODS) This is the github repository for the NeurIPS 2020 paper "Diversity can be Transferred: Output Diversification for W

50 Dec 11, 2022
Machine Learning toolbox for Humans

Reproducible Experiment Platform (REP) REP is ipython-based environment for conducting data-driven research in a consistent and reproducible way. Main

Yandex 662 Nov 20, 2022
Parsing, analyzing, and comparing source code across many languages

Semantic semantic is a Haskell library and command line tool for parsing, analyzing, and comparing source code. In a hurry? Check out our documentatio

GitHub 8.6k Dec 28, 2022
Weighted QMIX: Expanding Monotonic Value Function Factorisation

This repo contains the cleaned-up code that was used in "Weighted QMIX: Expanding Monotonic Value Function Factorisation"

whirl 82 Dec 29, 2022
Python framework for Stochastic Differential Equations modeling

SDElearn: a Python package for SDE modeling This package implements functionalities for working with Stochastic Differential Equations models (SDEs fo

4 May 10, 2022
Code for Multiple Instance Active Learning for Object Detection, CVPR 2021

Language: įŽ€äŊ“中文 | English Introduction This is the code for Multiple Instance Active Learning for Object Detection, CVPR 2021. Installation A Linux pla

Tianning Yuan 269 Dec 21, 2022
TF Image Segmentation: Image Segmentation framework

TF Image Segmentation: Image Segmentation framework The aim of the TF Image Segmentation framework is to provide/provide a simplified way for: Convert

Daniil Pakhomov 546 Dec 17, 2022
Progressive Domain Adaptation for Object Detection

Progressive Domain Adaptation for Object Detection Implementation of our paper Progressive Domain Adaptation for Object Detection, based on pytorch-fa

96 Nov 25, 2022
A pytorch implementation of Reading Wikipedia to Answer Open-Domain Questions.

DrQA A pytorch implementation of the ACL 2017 paper Reading Wikipedia to Answer Open-Domain Questions (DrQA). Reading comprehension is a task to produ

Runqi Yang 394 Nov 08, 2022
This is the paddle code for SeBoW(Self-Born wiring for neural trees), a kind of neural tree born form a large search space

SeBoW: Self-Born Wiring for neural trees(PaddlePaddle version) This is the paddle code for SeBoW(Self-Born wiring for neural trees), a kind of neural

HollyLee 13 Dec 08, 2022
On the model-based stochastic value gradient for continuous reinforcement learning

On the model-based stochastic value gradient for continuous reinforcement learning This repository is by Brandon Amos, Samuel Stanton, Denis Yarats, a

Facebook Research 46 Dec 15, 2022
This is an official implementation for "PlaneRecNet".

PlaneRecNet This is an official implementation for PlaneRecNet: A multi-task convolutional neural network provides instance segmentation for piece-wis

yaxu 50 Nov 17, 2022
Automatic meme generation model using Tensorflow Keras.

Memefly You can find the project at MemeflyAI. Contributors Nick Buukhalter Harsh Desai Han Lee Project Overview Trello Board Product Canvas Automatic

BloomTech Labs 2 Jan 13, 2022