MAT: Mask-Aware Transformer for Large Hole Image Inpainting

Related tags

Deep LearningMAT
Overview

MAT: Mask-Aware Transformer for Large Hole Image Inpainting (CVPR2022, Oral)

Wenbo Li, Zhe Lin, Kun Zhou, Lu Qi, Yi Wang, Jiaya Jia

[Paper]


News

This is the official implementation of MAT. The training and testing code is released. We also provide our masks for CelebA-HQ-val and Places-val here.


Visualization

We present a transformer-based model (MAT) for large hole inpainting with high fidelity and diversity.

large hole inpainting with pluralistic generation

Compared to other methods, the proposed MAT restores more photo-realistic images with fewer artifacts.

comparison with sotas

Usage

  1. Clone the repository.
    git clone https://github.com/fenglinglwb/MAT.git 
  2. Install the dependencies.
    • Python 3.7
    • PyTorch 1.7.1
    • Cuda 11.0
    • Other packages
    pip install -r requirements.txt

Quick Test

  1. We provide models trained on CelebA-HQ and Places365-Standard at 512x512 resolution. Download models from One Drive and put them into the 'pretrained' directory. The released models are retrained, and hence the visualization results may slightly differ from the paper.

  2. Obtain inpainted results by running

    python generate_image.py --network model_path --dpath data_path --outdir out_path [--mpath mask_path]

    where the mask path is optional. If not assigned, random 512x512 masks will be generated. Note that 0 and 1 values in a mask refer to masked and remained pixels.

    For example, run

    python generate_image.py --network pretrained/CelebA-HQ.pkl --dpath test_sets/CelebA-HQ/images --mpath test_sets/CelebA-HQ/masks --outdir samples

    Note. Our implementation only supports generating an image whose size is a multiple of 512. You need to pad or resize the image to make its size a multiple of 512. Please pad the mask with 0 values.

Train

For example, if you want to train a model on Places, run a bash script with

python train.py \
    --outdir=output_path \
    --gpus=8 \
    --batch=32 \
    --metrics=fid36k5_full \
    --data=training_data_path \
    --data_val=val_data_path \
    --dataloader=datasets.dataset_512.ImageFolderMaskDataset \
    --mirror=True \
    --cond=False \
    --cfg=places512 \
    --aug=noaug \
    --generator=networks.mat.Generator \
    --discriminator=networks.mat.Discriminator \
    --loss=losses.loss.TwoStageLoss \
    --pr=0.1 \
    --pl=False \
    --truncation=0.5 \
    --style_mix=0.5 \
    --ema=10 \
    --lr=0.001

Description of arguments:

  • outdir: output path for saving logs and models
  • gpus: number of used gpus
  • batch: number of images in all gpus
  • metrics: find more metrics in 'metrics/metric_main.py'
  • data: training data
  • data_val: validation data
  • dataloader: you can define your own dataloader
  • mirror: use flip augmentation or not
  • cond: use class info, default: false
  • cfg: configuration, find more details in 'train.py'
  • aug: use augmentation of style-gan-ada or not, default: false
  • generator: you can define your own generator
  • discriminator: you can define your own discriminator
  • loss: you can define your own loss
  • pr: ratio of perceptual loss
  • pl: use path length regularization or not, default: false
  • truncation: truncation ratio proposed in stylegan
  • style_mix: style mixing ratio proposed in stylegan
  • ema: exponoential moving averate, ~K samples
  • lr: learning rate

Evaluation

We provide evaluation scrtips for FID/U-IDS/P-IDS/LPIPS/PSNR/SSIM/L1 metrics in the 'evaluation' directory. Only need to give paths of your results and GTs.

Citation

@inproceedings{li2022mat,
    title={MAT: Mask-Aware Transformer for Large Hole Image Inpainting},
    author={Li, Wenbo and Lin, Zhe and Zhou, Kun and Qi, Lu and Wang, Yi and Jia, Jiaya},
    booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
    year={2022}
}

License and Acknowledgement

The code and models in this repo are for research purposes only. Our code is bulit upon StyleGAN2-ADA.

[CVPR 2021 Oral] Variational Relational Point Completion Network

VRCNet: Variational Relational Point Completion Network This repository contains the PyTorch implementation of the paper: Variational Relational Point

PL 121 Dec 12, 2022
Official implementation of "Articulation Aware Canonical Surface Mapping"

Articulation-Aware Canonical Surface Mapping Nilesh Kulkarni, Abhinav Gupta, David F. Fouhey, Shubham Tulsiani Paper Project Page Requirements Python

Nilesh Kulkarni 56 Dec 16, 2022
PICK: Processing Key Information Extraction from Documents using Improved Graph Learning-Convolutional Networks

Code for the paper "PICK: Processing Key Information Extraction from Documents using Improved Graph Learning-Convolutional Networks" (ICPR 2020)

Wenwen Yu 498 Dec 24, 2022
Leibniz is a python package which provide facilities to express learnable partial differential equations with PyTorch

Leibniz is a python package which provide facilities to express learnable partial differential equations with PyTorch

Beijing ColorfulClouds Technology Co.,Ltd. 16 Aug 07, 2022
Unified unsupervised and semi-supervised domain adaptation network for cross-scenario face anti-spoofing, Pattern Recognition

USDAN The implementation of Unified unsupervised and semi-supervised domain adaptation network for cross-scenario face anti-spoofing, which is accepte

11 Nov 03, 2022
Code for the Paper: Conditional Variational Capsule Network for Open Set Recognition

Conditional Variational Capsule Network for Open Set Recognition This repository hosts the official code related to "Conditional Variational Capsule N

Guglielmo Camporese 35 Nov 21, 2022
YOLOv4 / Scaled-YOLOv4 / YOLO - Neural Networks for Object Detection (Windows and Linux version of Darknet )

Yolo v4, v3 and v2 for Windows and Linux (neural networks for object detection) Paper YOLO v4: https://arxiv.org/abs/2004.10934 Paper Scaled YOLO v4:

Alexey 20.2k Jan 09, 2023
Implementation of Deformable Attention in Pytorch from the paper "Vision Transformer with Deformable Attention"

Deformable Attention Implementation of Deformable Attention from this paper in Pytorch, which appears to be an improvement to what was proposed in DET

Phil Wang 128 Dec 24, 2022
机器学习、深度学习、自然语言处理等人工智能基础知识总结。

说明 机器学习、深度学习、自然语言处理基础知识总结。 目前主要参考李航老师的《统计学习方法》一书,也有一些内容例如XGBoost、聚类、深度学习相关内容、NLP相关内容等是书中未提及的。

Peter 445 Dec 12, 2022
Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style

Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style [NeurIPS 2021] Official code to reproduce the results and data p

Yash Sharma 27 Sep 19, 2022
Deploy optimized transformer based models on Nvidia Triton server

Deploy optimized transformer based models on Nvidia Triton server

Lefebvre Sarrut Services 1.2k Jan 05, 2023
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

107 Dec 02, 2022
Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Zhengzhong Tu 5 Sep 16, 2022
Hysterese plugin with two temperature offset areas

craftbeerpi4 plugin OffsetHysterese Temperatur-Steuerungs-Plugin mit zwei tempereaturbereich abhängigen Offsets. Installation sudo pip3 install https:

HappyHibo 1 Dec 21, 2021
3D-Transformer: Molecular Representation with Transformer in 3D Space

3D-Transformer: Molecular Representation with Transformer in 3D Space

55 Dec 19, 2022
Adapter-BERT: Parameter-Efficient Transfer Learning for NLP.

Adapter-BERT: Parameter-Efficient Transfer Learning for NLP.

Google Research 340 Jan 03, 2023
Unofficial implementation of Point-Unet: A Context-Aware Point-Based Neural Network for Volumetric Segmentation

Point-Unet This is an unofficial implementation of the MICCAI 2021 paper Point-Unet: A Context-Aware Point-Based Neural Network for Volumetric Segment

Namt0d 9 Dec 07, 2022
Stacked Hourglass Network with a Multi-level Attention Mechanism: Where to Look for Intervertebral Disc Labeling

⚠️ ‎‎‎ A more recent and actively-maintained version of this code is available in ivadomed Stacked Hourglass Network with a Multi-level Attention Mech

Reza Azad 14 Oct 24, 2022
Pre-trained model, code, and materials from the paper "Impact of Adversarial Examples on Deep Learning Models for Biomedical Image Segmentation" (MICCAI 2019).

Adaptive Segmentation Mask Attack This repository contains the implementation of the Adaptive Segmentation Mask Attack (ASMA), a targeted adversarial

Utku Ozbulak 53 Jul 04, 2022