An implementation of "Learning human behaviors from motion capture by adversarial imitation"

Overview

Merel-MoCap-GAIL

An implementation of Merel et al.'s paper on generative adversarial imitation learning (GAIL) using motion capture (MoCap) data:

Learning human behaviors from motion capture by adversarial imitation
Josh Merel, Yuval Tassa, Dhruva TB, Sriram Srinivasan, Jay Lemmon, Ziyu Wang, Greg Wayne, Nicolas Heess
arXiv preprint arXiv:1707.02201, 2017

Acknowledgements

This code is based on an earlier version developed by Ruben Villegas.

Clone the Repository

This repo contains one submodule (baselines), so make sure you clone with --recursive:

git clone --recursive https://github.com/ywchao/merel-mocap-gail.git

Installation

Make sure the following are installed.

  • Our own branch of baselines provided as a submodule

    1. Change the directory:

      cd baselines
    2. Go through the installation steps in this README without re-cloning the repo.

  • An old verion of dm_control provided as a submodule

    1. Change the directory:

      cd dm_control
    2. Go through the installation steps in this README without re-cloning the repo. This requires the installation of MuJoCo. Also make sure to install the cloned verion:

      pip install .

    Note that we have only tested on this version. The code might work with newer versions but it is not guaranteed.

  • Matplotlib

Training and Visualization

  1. Download the CMU MoCap dataset:

    ./scripts/download_cmu_mocap.sh

    This will populate the data folder with cmu_mocap.

  2. Preprocess data. We use the walk sequences from subject 8 as described in the paper.

    ./scripts/data_collect.sh

    The output will be saved in data/cmu_mocap.npz.

  3. Visualize the processed MoCap sequences in dm_control:

    ./scripts/data_visualize.sh

    The output will be saved in data/cmu_mocap_vis.

  4. Start training:

    ./scripts/train.sh 0 1

    Note that:

    • The first argument sets the random seed, and the second argument sets the number of used sequences.
    • For now we use only sequence 1. We will show using all sequences in later steps.
    • The command will run training with random seed 0. In practice we recommend running multiple training jobs with different seeds in parallel, as the training outcome is often sensitive to the seed value.

    The output will be saved in output.

  5. Monitor training with TensorBoard:

    tensorboard --logdir=output --port=6006

    Below are the curves of episode length, rewards, and true rewards, obtained with four different random seeds:

  6. Visualize trained humanoid:

    ./scripts/visualize.sh \
      output/trpo_gail.obs_only.transition_limitation_1.humanoid_CMU_run.g_step_3.d_step_1.policy_entcoeff_0.adversary_entcoeff_0.001.seed_0.num_timesteps_5.00e+07/checkpoints/model.ckpt-30000 \
      output/trpo_gail.obs_only.transition_limitation_1.humanoid_CMU_run.g_step_3.d_step_1.policy_entcoeff_0.adversary_entcoeff_0.001.seed_0.num_timesteps_5.00e+07/vis_model.ckpt-30000.mp4 \
      0 \
      1

    The arguments are the model path, output video (mp4) file path, random seed, and number of used sequences.

    Below is a sample visualization:

  7. If you want to train with all sequences from subject 8. This can be done by replacing 1 by -1 in step 4:

    ./scripts/train.sh 0 -1

    Similarly, for visualization, replace 1 by -1 and update the paths:

    ./scripts/visualize.sh \
      output/trpo_gail.obs_only.transition_limitation_-1.humanoid_CMU_run.g_step_3.d_step_1.policy_entcoeff_0.adversary_entcoeff_0.001.seed_0.num_timesteps_5.00e+07/checkpoints/model.ckpt-50000 \
      output/trpo_gail.obs_only.transition_limitation_-1.humanoid_CMU_run.g_step_3.d_step_1.policy_entcoeff_0.adversary_entcoeff_0.001.seed_0.num_timesteps_5.00e+07/vis_model.ckpt-50000.mp4 \
      0 \
      -1

    Note that training takes longer to converge when using all sequences:

    A sample visualization:

Owner
Yu-Wei Chao
Yu-Wei Chao
PyTorch Implementation of DiffGAN-TTS: High-Fidelity and Efficient Text-to-Speech with Denoising Diffusion GANs

DiffGAN-TTS - PyTorch Implementation PyTorch implementation of DiffGAN-TTS: High

Keon Lee 157 Jan 01, 2023
Linear algebra python - Number of operations and problems in Linear Algebra and Numerical Linear Algebra

Linear algebra in python Number of operations and problems in Linear Algebra and

Alireza 5 Oct 09, 2022
This is the pytorch re-implementation of the IterNorm

IterNorm-pytorch Pytorch reimplementation of the IterNorm methods, which is described in the following paper: Iterative Normalization: Beyond Standard

Lei Huang 32 Dec 27, 2022
Annotated, understandable, and visually interpretable PyTorch implementations of: VAE, BIRVAE, NSGAN, MMGAN, WGAN, WGANGP, LSGAN, DRAGAN, BEGAN, RaGAN, InfoGAN, fGAN, FisherGAN

Overview PyTorch 0.4.1 | Python 3.6.5 Annotated implementations with comparative introductions for minimax, non-saturating, wasserstein, wasserstein g

Shayne O'Brien 471 Dec 16, 2022
Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation

Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation Introduction This is a PyTorch

XMed-Lab 30 Sep 23, 2022
Tooling for converting STAC metadata to ODC data model

手语识别 0、使用到的模型 (1). openpose,作者:CMU-Perceptual-Computing-Lab https://github.com/CMU-Perceptual-Computing-Lab/openpose (2). 图像分类classification,作者:Bubbl

Open Data Cube 65 Dec 20, 2022
MonoRCNN is a monocular 3D object detection method for automonous driving

MonoRCNN MonoRCNN is a monocular 3D object detection method for automonous driving, published at ICCV 2021. This project is an implementation of MonoR

87 Dec 27, 2022
SplineConv implementation for Paddle.

SplineConv implementation for Paddle This module implements the SplineConv operators from Matthias Fey, Jan Eric Lenssen, Frank Weichert, Heinrich Mül

北海若 3 Dec 29, 2021
The Illinois repository for Climatehack (https://climatehack.ai/). We won 1st place!

Climatehack This is the repository for Illinois's Climatehack Team. We earned first place on the leaderboard with a final score of 0.87992. An overvie

Jatin Mathur 20 Jun 09, 2022
A python package for generating, analyzing and visualizing building shadows

pybdshadow Introduction pybdshadow is a python package for generating, analyzing and visualizing building shadows from large scale building geographic

Qing Yu 13 Nov 30, 2022
Classify music genre from a 10 second sound stream using a Neural Network.

MusicGenreClassification Academic research in the field of Deep Learning (Deep Neural Networks) and Sound Processing, Tel Aviv University. Featured in

Matan Lachmish 453 Dec 27, 2022
🥇 LG-AI-Challenge 2022 1위 솔루션 입니다.

LG-AI-Challenge-for-Plant-Classification Dacon에서 진행된 농업 환경 변화에 따른 작물 병해 진단 AI 경진대회 에 대한 코드입니다. (colab directory에 코드가 잘 정리 되어있습니다.) Requirements python

siwooyong 10 Jun 30, 2022
MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions

MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions Project Page | Paper If you find our work useful for your research, please con

96 Jan 04, 2023
An open software package to develop BCI based brain and cognitive computing technology for recognizing user's intention using deep learning

An open software package to develop BCI based brain and cognitive computing technology for recognizing user's intention using deep learning

deepbci 272 Jan 08, 2023
🇰🇷 Text to Image in Korean

KoDALLE Utilizing pretrained language model’s token embedding layer and position embedding layer as DALLE’s text encoder. Background Training DALLE mo

HappyFace 74 Sep 22, 2022
A few stylization coreML models that I've trained with CreateML

CoreML-StyleTransfer A few stylization coreML models that I've trained with CreateML You can open and use the .mlmodel files in the "models" folder in

Doron Adler 8 Aug 18, 2022
Easy genetic ancestry predictions in Python

ezancestry Easily visualize your direct-to-consumer genetics next to 2500+ samples from the 1000 genomes project. Evaluate the performance of a custom

Kevin Arvai 38 Jan 02, 2023
PyTorch Implementation of Realtime Multi-Person Pose Estimation project.

PyTorch Realtime Multi-Person Pose Estimation This is a pytorch version of Realtime_Multi-Person_Pose_Estimation, origin code is here Realtime_Multi-P

Dave Fang 157 Nov 12, 2022
Localization Distillation for Object Detection

Localization Distillation for Object Detection This repo is based on mmDetection. This is the code for our paper: Localization Distillation

274 Dec 26, 2022