PyTorch implementation of "A Simple Baseline for Low-Budget Active Learning".

Overview

A Simple Baseline for Low-Budget Active Learning

This repository is the implementation of A Simple Baseline for Low-Budget Active Learning. In this paper, we are interested in low-budget active learning where only a small subset of unlabeled data, e.g. 0.2% of ImageNet, can be annotated. We show that although the state-of-the-art active learning methods work well given a large budget of data labeling, a simple k-means clustering algorithm can outperform them on low budgets. Our code is modified from CompRess [1].

@article{pourahmadi2021simple,
  title={A Simple Baseline for Low-Budget Active Learning},
  author={Pourahmadi, Kossar and Nooralinejad, Parsa and Pirsiavash, Hamed},
  journal={arXiv preprint arXiv:2110.12033},
  year={2021}
}

Benchmarks

We implemented the following query strategies in strategies.py on CIFAR-10, CIFAR-100, ImageNet, and ImageNet-LT datasets:

a) Single-batch k-means: At each round, it clusters the whole dataset to budget size clusters and sends nearest neighbors of centers directly to the oracle to be annotated.

b) Multi-batch k-means: Uses the difference of two consecutive budget sizes as the number of clusters and picks those nearest examples to centers that have not been labeled previously by the oracle.

c) Core-set [2]

d) Max-Entropy [3]: Treats the entropy of example probability distribution output as an uncertainty score and samples uncertain points for annotation.

e) Uniform: Selects equal number of samples randomly from all classes.

f) Random: Samples are selected randomly (uniformly) from the entire dataset.

Requirements

Usage

This implementation supports multi-gpu, DataParallel or single-gpu training.

You have the following options to run commands:

  • --arch We use pre-trained ResNet-18 with CompRess (download weights) or pre-trained ResNet-50 with MoCo-v2 (download weights). Use one of resnet18 or resnet50 as the argument accordingly.
  • --backbone compress, moco
  • --splits You can define budget sizes with comma as a seperator. For instance, --splits 10,20.
  • --name Specify the query strategy name by using one of uniform random kmeans accu_kmeans coreset.
  • --dataset Indicate the unlabeled dataset name by using one of cifar10 cifar100 imagenet imagenet_lt.

Sample selection

If the strategy needs an initial pool (accu_kmeans or coreset) then pass the file path with --resume-indices.

python sampler.py \
--arch resnet18 \
--weights [path to weights] \
--backbone compress \
--batch-size 4 \
--workers 4 \
--splits 100 \
--load_cache \
--name kmeans \
--dataset cifar10 \
[path to dataset file]

Linear classification

python eval_lincls.py \
--arch resnet18 \
--weights [path to weights] \
--backbone compress \
--batch-size 128 \
--workers 4 \
--lr 0.01 \
--lr_schedule 50,75 \
--epochs 100 \
--splits 1000 \  
--load_cache \
--name random \
--dataset imagenet \
[path to dataset file]

Nearest neighbor classification

python eval_knn.py \
--arch resnet18 \
--weights [path to weights] \
--backbone compress \
--batch-size 128 \
--workers 8 \
--splits 1000 \
--load_cache \
--name random \
--dataset cifar10 \
[path to dataset file]

Entropy sampling

To sample data using Max-Entropy, use active_sampler.py and entropy for --name. Give the initial pool indices file path with --resume-indices.

python active_sampler.py \
--arch resnet18 \
--weights [path to weights] \
--backbone compress \
--batch-size 128 \
--workers 4 \
--lr 0.001 \
--lr_schedule 50,75 \
--epochs 100 \
--splits 2000 \
--load_cache \
--name entropy \
--resume-indices [path to random initial pool file] \
--dataset imagenet \
[path to dataset file]

Fine-tuning

This file is implemented only for CompRess ResNet-18 backbone on ImageNet. --lr is the learning rate of backbone and --lr-lin is for the linear classifier.

python finetune.py \
--arch resnet18 \
--weights [path to weights] \
--batch-size 128 \
--workers 16 \
--epochs 100 \
--lr_schedule 50,75 \
--lr 0.0001 \
--lr-lin 0.01 \
--splits 1000 \
--name kmeans \
--dataset imagenet \
[path to dataset file]

Training from scratch

Starting from a random initialized network, you can train the model on CIFAR-100 or ImageNet.

python trainer_DP.py \
--arch resnet18 \
--batch-size 128 \
--workers 4 \
--epochs 100 \
--lr 0.1 \
--lr_schedule 30,60,90 \
--splits 1000 \
--name kmeans \
--dataset imagenet \
[path to dataset file]

References

[1] CompRess: Self-Supervised Learning by Compressing Representations, NeurIPS, 2020

[2] Active Learning for Convolutional Neural Networks: A Core-Set Approach, ICLR, 2018

[3] A new active labeling method for deep learning, IJCNN, 2014

Jittor implementation of Recursive-NeRF: An Efficient and Dynamically Growing NeRF

Recursive-NeRF: An Efficient and Dynamically Growing NeRF This is a Jittor implementation of Recursive-NeRF: An Efficient and Dynamically Growing NeRF

33 Nov 30, 2022
Code for the paper "On the Power of Edge Independent Graph Models"

Edge Independent Graph Models Code for the paper: "On the Power of Edge Independent Graph Models" Sudhanshu Chanpuriya, Cameron Musco, Konstantinos So

Konstantinos Sotiropoulos 0 Oct 26, 2021
PyTorch implementation of the paper Dynamic Data Augmentation with Gating Networks

Dynamic Data Augmentation with Gating Networks This is an official PyTorch implementation of the paper Dynamic Data Augmentation with Gating Networks

九州大学 ヒューマンインタフェース研究室 3 Oct 26, 2022
Colossal-AI: A Unified Deep Learning System for Large-Scale Parallel Training

ColossalAI An integrated large-scale model training system with efficient parallelization techniques. arXiv: Colossal-AI: A Unified Deep Learning Syst

HPC-AI Tech 7.9k Jan 08, 2023
Multi-Target Adversarial Frameworks for Domain Adaptation in Semantic Segmentation

Multi-Target Adversarial Frameworks for Domain Adaptation in Semantic Segmentation Paper Multi-Target Adversarial Frameworks for Domain Adaptation in

Valeo.ai 20 Jun 21, 2022
DCSAU-Net: A Deeper and More Compact Split-Attention U-Net for Medical Image Segmentation

DCSAU-Net: A Deeper and More Compact Split-Attention U-Net for Medical Image Segmentation By Qing Xu, Wenting Duan and Na He Requirements pytorch==1.1

Qing Xu 20 Dec 09, 2022
Real-world Anomaly Detection in Surveillance Videos- pytorch Re-implementation

Real world Anomaly Detection in Surveillance Videos : Pytorch RE-Implementation This repository is a re-implementation of "Real-world Anomaly Detectio

seominseok 62 Dec 08, 2022
This is project is the implementation of the DeepShift: Towards Multiplication-Less Neural Networks paper

DeepShift This is project is the implementation of the DeepShift: Towards Multiplication-Less Neural Networks paper, that aims to replace multiplicati

Mostafa Elhoushi 88 Dec 23, 2022
LightHuBERT: Lightweight and Configurable Speech Representation Learning with Once-for-All Hidden-Unit BERT

LightHuBERT LightHuBERT: Lightweight and Configurable Speech Representation Learning with Once-for-All Hidden-Unit BERT | Github | Huggingface | SUPER

WangRui 46 Dec 29, 2022
This code is for eCaReNet: explainable Cancer Relapse Prediction Network.

eCaReNet This code is for eCaReNet: explainable Cancer Relapse Prediction Network. (Towards Explainable End-to-End Prostate Cancer Relapse Prediction

Institute of Medical Systems Biology 2 Jul 28, 2022
[CVPR 2021] Counterfactual VQA: A Cause-Effect Look at Language Bias

Counterfactual VQA (CF-VQA) This repository is the Pytorch implementation of our paper "Counterfactual VQA: A Cause-Effect Look at Language Bias" in C

Yulei Niu 94 Dec 03, 2022
Source code for CVPR2022 paper "Abandoning the Bayer-Filter to See in the Dark"

Abandoning the Bayer-Filter to See in the Dark (CVPR 2022) Paper: https://arxiv.org/abs/2203.04042 (Arxiv version) This code includes the training and

74 Dec 15, 2022
An official implementation of the Anchor DETR.

Anchor DETR: Query Design for Transformer-Based Detector Introduction This repository is an official implementation of the Anchor DETR. We encode the

MEGVII Research 276 Dec 28, 2022
A simple algorithm for extracting tree height in sparse scene from point cloud data.

TREE HEIGHT EXTRACTION IN SPARSE SCENES BASED ON UAV REMOTE SENSING This is the offical python implementation of the paper "Tree Height Extraction in

6 Oct 28, 2022
A Decentralized Omnidirectional Visual-Inertial-UWB State Estimation System for Aerial Swar.

Omni-swarm A Decentralized Omnidirectional Visual-Inertial-UWB State Estimation System for Aerial Swarm Introduction Omni-swarm is a decentralized omn

HKUST Aerial Robotics Group 99 Dec 23, 2022
Code of PVTv2 is released! PVTv2 largely improves PVTv1 and works better than Swin Transformer with ImageNet-1K pre-training.

Updates (2020/06/21) Code of PVTv2 is released! PVTv2 largely improves PVTv1 and works better than Swin Transformer with ImageNet-1K pre-training. Pyr

1.3k Jan 04, 2023
A simple AI that will give you si ple task and this is made with python

Crystal-AI A simple AI that will give you si ple task and this is made with python Prerequsites: Python3.6.2 pyttsx3 pip install pyttsx3 pyaudio pip i

CrystalAnd 1 Dec 25, 2021
Invariant Causal Prediction for Block MDPs

MISA Abstract Generalization across environments is critical to the successful application of reinforcement learning algorithms to real-world challeng

Meta Research 41 Sep 17, 2022
3D Avatar Lip Syncronization from speech (JALI based face-rigging)

visemenet-inference Inference Demo of "VisemeNet-tensorflow" VisemeNet is an audio-driven animator centric speech animation driving a JALI or standard

Junhwan Jang 17 Dec 20, 2022
Fit Fast, Explain Fast

FastExplain Fit Fast, Explain Fast Installing pip install fast-explain About FastExplain FastExplain provides an out-of-the-box tool for analysts to

8 Dec 15, 2022