Robust Instance Segmentation through Reasoning about Multi-Object Occlusion [CVPR 2021]

Overview

Robust Instance Segmentation through Reasoning about Multi-Object Occlusion [CVPR 2021]

figure1

Abstract

Analyzing complex scenes with DNN is a challenging task, particularly when images contain multiple objects that partially occlude each other. Existing approaches to image analysis mostly process objects independently and do not take into account the relative occlusion of nearby objects. We propose a deep network for multi-object instance segmentation that is robust to occlusion and can be trained from bounding box supervision only.

We also introduce an Occlusion Challenge dataset generated from real-world segmented objects with accurate annotations and propose a taxonomy of occlusion scenarios that pose a particular challenge for computer vision.

occ_challenge_dataset


NOTICE

dataset links and model will be released in a few days. Update: 18 June

Requirments

The code uses Python 3.6 and it is tested on PyTorch GPU version 1.2, with CUDA-10.0 and cuDNN-7.5.

Installation

  1. Clone the repository with:
git clone https://github.com/XD7479/Multi-Object-Occlusion.git
cd Multi-Object-Occlusion
  1. Install requirments:
pip install -r requirements.txt

Datasets

  1. Download the KINS dataset here and the Occlusion Challenge dataset here.
  2. Enter the project folder and make links for the datasets:
ln -s  kins
ln -s  occ_challenge
  1. Download the pre-trained model here.
  2. Make links for the pre-trained model:
ln -s  models
  1. Check the configuration file configs.py for the dataset and backbone you're using:
dataset_eval = 'occ_challenge'      # kins, occ_challenge
nn_type = 'resnext'             # vgg, resnext

  1. Run the evaluation code with:
python3 eval_meanIoU.py

Segmentation Demo

demo

Citation

@misc{yuan2021robust,
      title={Robust Instance Segmentation through Reasoning about Multi-Object Occlusion}, 
      author={Xiaoding Yuan and Adam Kortylewski and Yihong Sun and Alan Yuille},
      booktitle = {Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)},
      month = jun,
      year = {2021},
      month_numeric = {6}
}

Contact

If you have any questions you can contact Xiaoding Yuan by [email protected].

Owner
Irene Yuan
Irene Yuan
On Nonlinear Latent Transformations for GAN-based Image Editing - PyTorch implementation

On Nonlinear Latent Transformations for GAN-based Image Editing - PyTorch implementation On Nonlinear Latent Transformations for GAN-based Image Editi

Valentin Khrulkov 22 Oct 24, 2022
Similarity-based Gray-box Adversarial Attack Against Deep Face Recognition

Similarity-based Gray-box Adversarial Attack Against Deep Face Recognition Introduction Run attack: SGADV.py Objective function: foolbox/attacks/gradi

1 Jul 18, 2022
harmonic-percussive-residual separation algorithm wrapped as a VST3 plugin (iPlug2)

Harmonic-percussive-residual separation plug-in This work is a study on the plausibility of a sines-transients-noise decomposition inspired algorithm

Derp Learning 9 Sep 01, 2022
The official github repository for Towards Continual Knowledge Learning of Language Models

Towards Continual Knowledge Learning of Language Models This is the official github repository for Towards Continual Knowledge Learning of Language Mo

Joel Jang | 장요엘 65 Jan 07, 2023
A small library of 3D related utilities used in my research.

utils3D A small library of 3D related utilities used in my research. Installation Install via GitHub pip install git+https://github.com/Steve-Tod/util

Zhenyu Jiang 8 May 20, 2022
ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation

ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation This repository contains the source code of our paper, ESPNet (acc

Sachin Mehta 515 Dec 13, 2022
Implementation of "Fast and Flexible Temporal Point Processes with Triangular Maps" (Oral @ NeurIPS 2020)

Fast and Flexible Temporal Point Processes with Triangular Maps This repository includes a reference implementation of the algorithms described in "Fa

Oleksandr Shchur 20 Dec 02, 2022
BBScan py3 - BBScan py3 With Python

BBScan_py3 This repository is forked from lijiejie/BBScan 1.5. I migrated the fo

baiyunfei 12 Dec 30, 2022
tsflex - feature-extraction benchmarking

tsflex - feature-extraction benchmarking This repository withholds the benchmark results and visualization code of the tsflex paper and toolkit. Flow

PreDiCT.IDLab 5 Mar 25, 2022
Pytorch implementation of Implicit Behavior Cloning.

Implicit Behavior Cloning - PyTorch (wip) Pytorch implementation of Implicit Behavior Cloning. Install conda create -n ibc python=3.8 pip install -r r

Kevin Zakka 49 Dec 25, 2022
Source code for the paper "PLOME: Pre-training with Misspelled Knowledge for Chinese Spelling Correction" in ACL2021

PLOME:Pre-training with Misspelled Knowledge for Chinese Spelling Correction (ACL2021) This repository provides the code and data of the work in ACL20

197 Nov 26, 2022
A collection of SOTA Image Classification Models in PyTorch

A collection of SOTA Image Classification Models in PyTorch

sithu3 85 Dec 30, 2022
Many Class Activation Map methods implemented in Pytorch for CNNs and Vision Transformers. Including Grad-CAM, Grad-CAM++, Score-CAM, Ablation-CAM and XGrad-CAM

Class Activation Map methods implemented in Pytorch pip install grad-cam ⭐ Tested on many Common CNN Networks and Vision Transformers. ⭐ Includes smoo

Jacob Gildenblat 6.6k Jan 06, 2023
ECAENet (TensorFlow and Keras)

ECAENet: EfficientNet with Efficient Channel Attention for Plant Species Recognition (SCI:Q3) (Journal of Intelligent & Fuzzy Systems)

4 Dec 22, 2022
Training a Resilient Q-Network against Observational Interference, Causal Inference Q-Networks

Obs-Causal-Q-Network AAAI 2022 - Training a Resilient Q-Network against Observational Interference Preprint | Slides | Colab Demo | Environment Setup

23 Nov 21, 2022
Deep Implicit Moving Least-Squares Functions for 3D Reconstruction

DeepMLS: Deep Implicit Moving Least-Squares Functions for 3D Reconstruction This repository contains the implementation of the paper: Deep Implicit Mo

103 Dec 22, 2022
Official repository for Automated Learning Rate Scheduler for Large-Batch Training (8th ICML Workshop on AutoML)

Automated Learning Rate Scheduler for Large-Batch Training The official repository for Automated Learning Rate Scheduler for Large-Batch Training (8th

Kakao Brain 35 Jan 04, 2023
Explaining Deep Neural Networks - A comparison of different CAM methods based on an insect data set

Explaining Deep Neural Networks - A comparison of different CAM methods based on an insect data set This is the repository for the Deep Learning proje

Robert Krug 3 Feb 06, 2022
HiFi++: a Unified Framework for Neural Vocoding, Bandwidth Extension and Speech Enhancement

HiFi++ : a Unified Framework for Neural Vocoding, Bandwidth Extension and Speech Enhancement This is the unofficial implementation of Vocoder part of

Rishikesh (ऋषिकेश) 118 Dec 29, 2022
An educational tool to introduce AI planning concepts using mobile manipulator robots.

JEDAI Explains Decision-Making AI Virtual Machine Image The recommended way of using JEDAI is to use pre-configured Virtual Machine image that is avai

Autonomous Agents and Intelligent Robots 13 Nov 15, 2022