CLOOB: Modern Hopfield Networks with InfoLOOB Outperform CLIP

Related tags

Deep Learningcloob
Overview

CLOOB: Modern Hopfield Networks with InfoLOOB Outperform CLIP

Andreas Fürst* 1, Elisabeth Rumetshofer* 1, Viet Tran1, Hubert Ramsauer1, Fei Tang3, Johannes Lehner1, David Kreil2, Michael Kopp2, Günter Klambauer1, Angela Bitto-Nemling1, Sepp Hochreiter1 2

1 ELLIS Unit Linz and LIT AI Lab, Institute for Machine Learning, Johannes Kepler University Linz, Austria
2 Institute of Advanced Research in Artificial Intelligence (IARAI)
3 HERE Technologies
* Equal contribution


Detailed blog post on this paper at this link.

The full paper is available here.


Implementation of CLOOB

This repository contains the implemenation of CLOOB used to obtain the results reported in the paper. The implementation is based on OpenCLIP, an open source implementation of OpenAI's CLIP.

Setup

We provide an 'environment.yml' file to set up a conda environment with all required packages. Run the following command to clone the repository and create the environment.

# Clone repository and swtich into the directory
git clone https://github.com/ml-jku/cloob
cd cloob

# Create the environment and activate it
conda env create --file environment.yml
conda activate cloob

# Additionally, webdataset needs to be installed from git repo for pre-training on YFCC 
pip install git+https://github.com/tmbdev/webdataset.git

# Add the directory to the PYTHONPATH environment variable
export PYTHONPATH="$PYTHONPATH:$PWD/src"

Data

For pre-training we use the two datasets supported by OpenCLIP, namely Conceptual Captions and YFCC.

Conceptual Captions

OpenCLIP already provides a script to download and prepare the Conceptual Captions dataset, which contains 2.89M training images and 13k validation images. First, download the Conceptual Captions URLs and then run the script gather_cc.py.

python3 src/data/gather_cc.py path/to/Train_GCC-training.tsv path/to/Validation_GCC-1.1.0-Validation.tsv

YFCC

We use the same subset of ~15M images from the YFCC100M dataset as CLIP. They provide a list of (line number, photo identifier, photo hash) of each image contained in this subset here.

For more information see YFCC100m Subset on OpenAI's github.

Downstream Tasks

In the paper we report results on several downstream tasks. Except for ImageNet we provide links to already pre-processed versions (where necessary) of the respective test set.

Dataset Description Official Processed
Birdsnap This dataset contains images of North American bird species, however
our dataset is smaller than reported in CLIP as some samples are no longer available.
Link Link
Country211 This dataset was published in CLIP and is a small subset of the YFCC100m dataset.
It consists of photos that can be assigned to 211 countries via GPS coordinates.
For each country 200 photos are sampled for the training set and 100 for testing.
Link Link
Flowers102 Images of 102 flower categories commonly occuring in the United Kingdom were collected.
Several classes are very similar and there is a large variation in scale, pose and lighting.
Link Link
GTSRB This dataset was released for a challenge held at the IJCNN 2011.
The dataset contains images of german traffic signs from more than 40 classes.
Link Link
Stanford Cars This dataset contains images of 196 car models at the level of make,
model and year (e.g. Tesla Model S Sedan 2012).
Link Link
UCF101 The dataset has been created by extracting the middle frame from each video. Link Link
ImageNet This dataset spans 1000 object classes and contains 1,281,167 training images,
50,000 validation images and 100,000 test images.
Link -
ImageNet v2 The ImageNetV2 dataset contains new test data for the ImageNet benchmark. Link -

Usage

In the following there is an example command for pretraining on CC with an effective batch size of 512 when used on 4 GPUs.

/conceptual_captions/Train-GCC-training_output.csv" \ --val-data=" /conceptual_captions/Validation_GCC-1.1.0-Validation_output.csv" \ --path-data=" /conceptual_captions" \ --imagenet-val=" /imagenet/val" \ --warmup 20000 \ --batch-size=128 \ --lr=1e-3 \ --wd=0.1 \ --lr-scheduler="cosine-restarts" \ --restart-cycles=10 \ --epochs=70 \ --method="cloob" \ --init-inv-tau=30 \ --init-scale-hopfield=8 \ --workers=8 \ --model="RN50" \ --dist-url="tcp://127.0.0.1:6100" \ --batch-size-eval=512 ">
python -u src/training/main.py \
--train-data="
       
        /conceptual_captions/Train-GCC-training_output.csv
        "
        \
--val-data="
       
        /conceptual_captions/Validation_GCC-1.1.0-Validation_output.csv
        "
        \
--path-data="
       
        /conceptual_captions
        "
        \
--imagenet-val="
       
        /imagenet/val
        "
        \
--warmup 20000 \
--batch-size=128 \
--lr=1e-3 \
--wd=0.1 \
--lr-scheduler="cosine-restarts" \
--restart-cycles=10 \
--epochs=70 \
--method="cloob" \
--init-inv-tau=30 \
--init-scale-hopfield=8 \
--workers=8 \
--model="RN50" \
--dist-url="tcp://127.0.0.1:6100" \
--batch-size-eval=512

Zeroshot evaluation of downstream tasks

We provide a Jupyter notebook to perform zeroshot evaluation with a trained model.

LICENSE

MIT LICENSE

Owner
Institute for Machine Learning, Johannes Kepler University Linz
Software of the Institute for Machine Learning, JKU Linz
Institute for Machine Learning, Johannes Kepler University Linz
Continuous Query Decomposition for Complex Query Answering in Incomplete Knowledge Graphs

Continuous Query Decomposition This repository contains the official implementation for our ICLR 2021 (Oral) paper, Complex Query Answering with Neura

UCL Natural Language Processing 71 Dec 29, 2022
SE3 Pose Interp - Interpolate camera pose or trajectory in SE3, pose interpolation, trajectory interpolation

SE3 Pose Interpolation Pose estimated from SLAM system are always discrete, and

Ran Cheng 4 Dec 15, 2022
一个目标检测的通用框架(不需要cuda编译),支持Yolo全系列(v2~v5)、EfficientDet、RetinaNet、Cascade-RCNN等SOTA网络。

一个目标检测的通用框架(不需要cuda编译),支持Yolo全系列(v2~v5)、EfficientDet、RetinaNet、Cascade-RCNN等SOTA网络。

Haoyu Xu 203 Jan 03, 2023
Official codebase for running the small, filtered-data GLIDE model from GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models.

GLIDE This is the official codebase for running the small, filtered-data GLIDE model from GLIDE: Towards Photorealistic Image Generation and Editing w

OpenAI 2.9k Jan 04, 2023
AdamW optimizer and cosine learning rate annealing with restarts

AdamW optimizer and cosine learning rate annealing with restarts This repository contains an implementation of AdamW optimization algorithm and cosine

Maksym Pyrozhok 133 Dec 20, 2022
This repo is about to create the Streamlit application for given ML model.

HR-Attritiion-using-Streamlit This repo is about to create the Streamlit application for given ML model. Problem Statement: Managing peoples at workpl

Pavan Giri 0 Dec 10, 2021
Large-scale Hyperspectral Image Clustering Using Contrastive Learning, CIKM 21 Workshop

Spectral-spatial contrastive clustering (SSCC) Yaoming Cai, Yan Liu, Zijia Zhang, Zhihua Cai, and Xiaobo Liu, Large-scale Hyperspectral Image Clusteri

Yaoming Cai 4 Nov 02, 2022
Deep Reinforced Attention Regression for Partial Sketch Based Image Retrieval.

DARP-SBIR Intro This repository contains the source code implementation for ICDM submission paper Deep Reinforced Attention Regression for Partial Ske

2 Jan 09, 2022
[CVPR'22] Official PyTorch Implementation of Collaborative Transformers for Grounded Situation Recognition

[CVPR'22] Collaborative Transformers for Grounded Situation Recognition Paper | Model Checkpoint This is the official PyTorch implementation of Collab

Junhyeong Cho 29 Dec 10, 2022
pytorch implementation for PointNet

PointNet.pytorch This repo is implementation for PointNet in pytorch. The model is in pointnet/model.py. It is teste

Fei Xia 1.7k Dec 30, 2022
TCTrack: Temporal Contexts for Aerial Tracking (CVPR2022)

TCTrack: Temporal Contexts for Aerial Tracking (CVPR2022) Ziang Cao and Ziyuan Huang and Liang Pan and Shiwei Zhang and Ziwei Liu and Changhong Fu In

Intelligent Vision for Robotics in Complex Environment 100 Dec 19, 2022
🎁 3,000,000+ Unsplash images made available for research and machine learning

The Unsplash Dataset The Unsplash Dataset is made up of over 250,000+ contributing global photographers and data sourced from hundreds of millions of

Unsplash 2k Jan 03, 2023
Collect some papers about transformer with vision. Awesome Transformer with Computer Vision (CV)

Awesome Visual-Transformer Collect some Transformer with Computer-Vision (CV) papers. If you find some overlooked papers, please open issues or pull r

dkliang 2.8k Jan 08, 2023
Implementation of the 😇 Attention layer from the paper, Scaling Local Self-Attention For Parameter Efficient Visual Backbones

HaloNet - Pytorch Implementation of the Attention layer from the paper, Scaling Local Self-Attention For Parameter Efficient Visual Backbones. This re

Phil Wang 189 Nov 22, 2022
Classical OCR DCNN reproduction based on PaddlePaddle framework.

Paddle-SVHN Classical OCR DCNN reproduction based on PaddlePaddle framework. This project reproduces Multi-digit Number Recognition from Street View I

1 Nov 12, 2021
A two-stage U-Net for high-fidelity denoising of historical recordings

A two-stage U-Net for high-fidelity denoising of historical recordings Official repository of the paper (not submitted yet): E. Moliner and V. Välimäk

Eloi Moliner Juanpere 57 Jan 05, 2023
Multi-Person Extreme Motion Prediction

Multi-Person Extreme Motion Prediction Implementation for paper Wen Guo, Xiaoyu Bie, Xavier Alameda-Pineda, Francesc Moreno-Noguer, Multi-Person Extre

GUO-W 38 Nov 15, 2022
Fang Zhonghao 13 Nov 19, 2022
Content shared at DS-OX Meetup

Streamlit-Projects Streamlit projects available in this repo: An introduction to Streamlit presented at DS-OX (Feb 26, 2020) meetup Streamlit 101 - Ja

Arvindra 69 Dec 23, 2022
Introduction to AI assignment 1 HCM University of Technology, term 211

Sokoban Bot Introduction to AI assignment 1 HCM University of Technology, term 211 Abstract This is basically a solver for Sokoban game using Breadth-

Quang Minh 4 Dec 12, 2022