CLOOB: Modern Hopfield Networks with InfoLOOB Outperform CLIP

Related tags

Deep Learningcloob
Overview

CLOOB: Modern Hopfield Networks with InfoLOOB Outperform CLIP

Andreas Fürst* 1, Elisabeth Rumetshofer* 1, Viet Tran1, Hubert Ramsauer1, Fei Tang3, Johannes Lehner1, David Kreil2, Michael Kopp2, Günter Klambauer1, Angela Bitto-Nemling1, Sepp Hochreiter1 2

1 ELLIS Unit Linz and LIT AI Lab, Institute for Machine Learning, Johannes Kepler University Linz, Austria
2 Institute of Advanced Research in Artificial Intelligence (IARAI)
3 HERE Technologies
* Equal contribution


Detailed blog post on this paper at this link.

The full paper is available here.


Implementation of CLOOB

This repository contains the implemenation of CLOOB used to obtain the results reported in the paper. The implementation is based on OpenCLIP, an open source implementation of OpenAI's CLIP.

Setup

We provide an 'environment.yml' file to set up a conda environment with all required packages. Run the following command to clone the repository and create the environment.

# Clone repository and swtich into the directory
git clone https://github.com/ml-jku/cloob
cd cloob

# Create the environment and activate it
conda env create --file environment.yml
conda activate cloob

# Additionally, webdataset needs to be installed from git repo for pre-training on YFCC 
pip install git+https://github.com/tmbdev/webdataset.git

# Add the directory to the PYTHONPATH environment variable
export PYTHONPATH="$PYTHONPATH:$PWD/src"

Data

For pre-training we use the two datasets supported by OpenCLIP, namely Conceptual Captions and YFCC.

Conceptual Captions

OpenCLIP already provides a script to download and prepare the Conceptual Captions dataset, which contains 2.89M training images and 13k validation images. First, download the Conceptual Captions URLs and then run the script gather_cc.py.

python3 src/data/gather_cc.py path/to/Train_GCC-training.tsv path/to/Validation_GCC-1.1.0-Validation.tsv

YFCC

We use the same subset of ~15M images from the YFCC100M dataset as CLIP. They provide a list of (line number, photo identifier, photo hash) of each image contained in this subset here.

For more information see YFCC100m Subset on OpenAI's github.

Downstream Tasks

In the paper we report results on several downstream tasks. Except for ImageNet we provide links to already pre-processed versions (where necessary) of the respective test set.

Dataset Description Official Processed
Birdsnap This dataset contains images of North American bird species, however
our dataset is smaller than reported in CLIP as some samples are no longer available.
Link Link
Country211 This dataset was published in CLIP and is a small subset of the YFCC100m dataset.
It consists of photos that can be assigned to 211 countries via GPS coordinates.
For each country 200 photos are sampled for the training set and 100 for testing.
Link Link
Flowers102 Images of 102 flower categories commonly occuring in the United Kingdom were collected.
Several classes are very similar and there is a large variation in scale, pose and lighting.
Link Link
GTSRB This dataset was released for a challenge held at the IJCNN 2011.
The dataset contains images of german traffic signs from more than 40 classes.
Link Link
Stanford Cars This dataset contains images of 196 car models at the level of make,
model and year (e.g. Tesla Model S Sedan 2012).
Link Link
UCF101 The dataset has been created by extracting the middle frame from each video. Link Link
ImageNet This dataset spans 1000 object classes and contains 1,281,167 training images,
50,000 validation images and 100,000 test images.
Link -
ImageNet v2 The ImageNetV2 dataset contains new test data for the ImageNet benchmark. Link -

Usage

In the following there is an example command for pretraining on CC with an effective batch size of 512 when used on 4 GPUs.

/conceptual_captions/Train-GCC-training_output.csv" \ --val-data=" /conceptual_captions/Validation_GCC-1.1.0-Validation_output.csv" \ --path-data=" /conceptual_captions" \ --imagenet-val=" /imagenet/val" \ --warmup 20000 \ --batch-size=128 \ --lr=1e-3 \ --wd=0.1 \ --lr-scheduler="cosine-restarts" \ --restart-cycles=10 \ --epochs=70 \ --method="cloob" \ --init-inv-tau=30 \ --init-scale-hopfield=8 \ --workers=8 \ --model="RN50" \ --dist-url="tcp://127.0.0.1:6100" \ --batch-size-eval=512 ">
python -u src/training/main.py \
--train-data="
       
        /conceptual_captions/Train-GCC-training_output.csv
        "
        \
--val-data="
       
        /conceptual_captions/Validation_GCC-1.1.0-Validation_output.csv
        "
        \
--path-data="
       
        /conceptual_captions
        "
        \
--imagenet-val="
       
        /imagenet/val
        "
        \
--warmup 20000 \
--batch-size=128 \
--lr=1e-3 \
--wd=0.1 \
--lr-scheduler="cosine-restarts" \
--restart-cycles=10 \
--epochs=70 \
--method="cloob" \
--init-inv-tau=30 \
--init-scale-hopfield=8 \
--workers=8 \
--model="RN50" \
--dist-url="tcp://127.0.0.1:6100" \
--batch-size-eval=512

Zeroshot evaluation of downstream tasks

We provide a Jupyter notebook to perform zeroshot evaluation with a trained model.

LICENSE

MIT LICENSE

Owner
Institute for Machine Learning, Johannes Kepler University Linz
Software of the Institute for Machine Learning, JKU Linz
Institute for Machine Learning, Johannes Kepler University Linz
Using Machine Learning to Test Causal Hypotheses in Conjoint Analysis

Readme File for "Using Machine Learning to Test Causal Hypotheses in Conjoint Analysis" by Ham, Imai, and Janson. (2022) All scripts were written and

0 Jan 27, 2022
Python PID Tuner - Makes a model of the System from a Process Reaction Curve and calculates PID Gains

PythonPID_Tuner_SOPDT Step 1: Takes a Process Reaction Curve in csv format - assumes data at 100ms interval (column names CV and PV) Step 2: Makes a r

1 Jan 18, 2022
Bringing Computer Vision and Flutter together , to build an awesome app !!

Bringing Computer Vision and Flutter together , to build an awesome app !! Explore the Directories Flutter · Machine Learning Table of Contents About

Padmanabha Banerjee 14 Apr 07, 2022
Implicit Graph Neural Networks

Implicit Graph Neural Networks This repository is the official PyTorch implementation of "Implicit Graph Neural Networks". Fangda Gu*, Heng Chang*, We

Heng Chang 48 Nov 29, 2022
Official Pytorch Code for the paper TransWeather

TransWeather Official Code for the paper TransWeather, Arxiv Tech Report 2021 Paper | Website About this repo: This repo hosts the implentation code,

Jeya Maria Jose 81 Dec 30, 2022
OpenAi's gym environment wrapper to vectorize them with Ray

Ray Vector Environment Wrapper You would like to use Ray to vectorize your environment but you don't want to use RLLib ? You came to the right place !

Pierre TASSEL 15 Nov 10, 2022
Resources related to EMNLP 2021 paper "FAME: Feature-Based Adversarial Meta-Embeddings for Robust Input Representations"

FAME: Feature-based Adversarial Meta-Embeddings This is the companion code for the experiments reported in the paper "FAME: Feature-Based Adversarial

Bosch Research 11 Nov 27, 2022
Transformer based SAR image despeckling

Transformer based SAR image despeckling Using the code: The code is stable while using Python 3.6.13, CUDA =10.1 Clone this repository: git clone htt

27 Nov 13, 2022
Visualize Camera's Pose Using Extrinsic Parameter by Plotting Pyramid Model on 3D Space

extrinsic2pyramid Visualize Camera's Pose Using Extrinsic Parameter by Plotting Pyramid Model on 3D Space Intro A very simple and straightforward modu

JEONG HYEONJIN 106 Dec 28, 2022
Principled Detection of Out-of-Distribution Examples in Neural Networks

ODIN: Out-of-Distribution Detector for Neural Networks This is a PyTorch implementation for detecting out-of-distribution examples in neural networks.

189 Nov 29, 2022
A Simulation Environment to train Robots in Large Realistic Interactive Scenes

iGibson: A Simulation Environment to train Robots in Large Realistic Interactive Scenes iGibson is a simulation environment providing fast visual rend

Stanford Vision and Learning Lab 493 Jan 04, 2023
Tutorial materials for Part of NSU Intro to Deep Learning with PyTorch.

Intro to Deep Learning Materials are part of North South University (NSU) Intro to Deep Learning with PyTorch workshop series. (Slides) Related materi

Hasib Zunair 9 Jun 08, 2022
Code for reproducing experiments in "Improved Training of Wasserstein GANs"

Improved Training of Wasserstein GANs Code for reproducing experiments in "Improved Training of Wasserstein GANs". Prerequisites Python, NumPy, Tensor

Ishaan Gulrajani 2.2k Jan 01, 2023
Code for 'Blockwise Sequential Model Learning for Partially Observable Reinforcement Learning' (AAAI 2022)

Blockwise Sequential Model Learning Code for 'Blockwise Sequential Model Learning for Partially Observable Reinforcement Learning' (AAAI 2022) For ins

2 Jun 17, 2022
Official implementation for paper Knowledge Bridging for Empathetic Dialogue Generation (AAAI 2021).

Knowledge Bridging for Empathetic Dialogue Generation This is the official implementation for paper Knowledge Bridging for Empathetic Dialogue Generat

Qintong Li 50 Dec 20, 2022
RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.

RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.

184 Jan 04, 2023
Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification

Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification

258 Dec 29, 2022
Predicting lncRNA–protein interactions based on graph autoencoders and collaborative training

Predicting lncRNA–protein interactions based on graph autoencoders and collaborative training Code for our paper "Predicting lncRNA–protein interactio

zhanglabNKU 1 Nov 29, 2022
[ICCV 2021] FaPN: Feature-aligned Pyramid Network for Dense Image Prediction

FaPN: Feature-aligned Pyramid Network for Dense Image Prediction [arXiv] [Project Page] @inproceedings{ huang2021fapn, title={{FaPN}: Feature-alig

EMI-Group 175 Dec 30, 2022
Script that attempts to force M1 macs into RGB mode when used with monitors that are defaulting to YPbPr.

fix_m1_rgb Script that attempts to force M1 macs into RGB mode when used with monitors that are defaulting to YPbPr. No warranty provided for using th

Kevin Gao 116 Jan 01, 2023