Learning Domain Invariant Representations in Goal-conditioned Block MDPs

Related tags

Deep LearningPASF
Overview

Learning Domain Invariant Representations in Goal-conditioned Block MDPs

Beining Han,   Chongyi Zheng,   Harris Chan,   Keiran Paster,   Michael R. Zhang,   Jimmy Ba

paper

Summary: Deep Reinforcement Learning agents often face unanticipated environmental changes after deployment in the real world. These changes are often spurious and unrelated to the underlying problem, such as background shifts for visual input agents. Unfortunately, deep RL policies are usually sensitive to these changes and fail to act robustly against them. This resembles the problem of domain generalization in supervised learning. In this work, we study this problem for goal-conditioned RL agents. We propose a theoretical framework in the Block MDP setting that characterizes the generalizability of goal-conditioned policies to new environments. Under this framework, we develop a practical method PA-SkewFit (PASF) that enhances domain generalization.

@article{han2021learning,
  title={Learning Domain Invariant Representations in Goal-conditioned Block MDPs},
  author={Han, Beining and Zheng, Chongyi and Chan, Harris and Paster, Keiran and Zhang, Michael and Ba, Jimmy},
  journal={Advances in Neural Information Processing Systems},
  volume={34},
  year={2021}
}

Installation

Our code was adapted from rlkit and was tested on a Ubuntu 20.04 server.

This instruction assumes that you have already installed NVIDIA driver, Anaconda, and MuJoCo.

You'll need to get your own MuJoCo key if you want to use MuJoCo.

1. Create Anaconda environment

Install the included Anaconda environment

$ conda env create -f environment/pasf_env.yml
$ source activate pasf_env
(pasf_env) $ python

2. Download the goals

Download the goals from the following link and put it here: (PASF DIR)/multiworld/envs/mujoco.

$ ls (PASF DIR)/multiworld/envs/mujoco
... goals ... 
  1. (Optional) Speed up with GPU rendering

3. (Optional) Speed-up with GPU rendering

Note: GPU rendering for mujoco-py speeds up training a lot but consumes more GPU memory at the same time.

Check this Issues:

Remember to do this stuff with the mujoco-py package inside of your pasf_env.

Running Experiments

The following command run the PASF experiments for the four tasks: Reach, Door, Push, Pickup, in the learning curve respectively.

$ source activate pasf_env
(pasf_env) $ bash (PASF DIR)/bash_scripts/pasf_reach_lc_exp.bash
(pasf_env) $ bash (PASF DIR)/bash_scripts/pasf_door_lc_exp.bash
(pasf_env) $ bash (PASF DIR)/bash_scripts/pasf_push_lc_exp.bash
(pasf_env) $ bash (PASF DIR)/bash_scripts/pasf_pickup_lc_exp.bash
  • The bash scripts only set equation, equation, and equation with the exact values we used for LC. But you can play with other hyperparameters in python scripts under (PASF DIR)/experiment.

  • Training and evaluation environments are chosen in python scripts for each task. You can find the backgrounds in (PASF DIR)/multiworld/core/background and domains in (PASF DIR)/multiworld/envs/assets/sawyer_xyz.

  • Results are recorded in progress.csv under (PASF DIR)/data/ and variant.json contains configuration for each experiment.

  • We simply set random seeds as 0, 1, 2, etc., and run experiments with 6-9 different seeds for each task.

  • Error and output logs can be found in (PASF DIR)/terminal_log.

Questions

If you have any questions, comments, or suggestions, please reach out to Beining Han ([email protected]) and Chongyi Zheng ([email protected]).

Owner
Chongyi Zheng
Chongyi Zheng
Chunkmogrify: Real image inversion via Segments

Chunkmogrify: Real image inversion via Segments Teaser video with live editing sessions can be found here This code demonstrates the ideas discussed i

David Futschik 112 Jan 04, 2023
Laplace Redux -- Effortless Bayesian Deep Learning

Laplace Redux - Effortless Bayesian Deep Learning This repository contains the code to run the experiments for the paper Laplace Redux - Effortless Ba

Runa Eschenhagen 28 Dec 07, 2022
Official implementation of the paper "Light Field Networks: Neural Scene Representations with Single-Evaluation Rendering"

Light Field Networks Project Page | Paper | Data | Pretrained Models Vincent Sitzmann*, Semon Rezchikov*, William Freeman, Joshua Tenenbaum, Frédo Dur

Vincent Sitzmann 130 Dec 29, 2022
Cards Against Humanity AI

cah-ai This is a Cards Against Humanity AI implemented using a pre-trained Semantic Search model. How it works A player is described by a combination

Alex Nichol 2 Aug 22, 2022
Exploring Classification Equilibrium in Long-Tailed Object Detection, ICCV2021

Exploring Classification Equilibrium in Long-Tailed Object Detection (LOCE, ICCV 2021) Paper Introduction The conventional detectors tend to make imba

52 Nov 21, 2022
OneShot Learning-based hotword detection.

EfficientWord-Net Hotword detection based on one-shot learning Home assistants require special phrases called hotwords to get activated (eg:"ok google

ANT-BRaiN 102 Dec 25, 2022
BitPack is a practical tool to efficiently save ultra-low precision/mixed-precision quantized models.

BitPack is a practical tool that can efficiently save quantized neural network models with mixed bitwidth.

Zhen Dong 36 Dec 02, 2022
EfficientNetV2-with-TPU - Cifar-10 case study

EfficientNetV2-with-TPU EfficientNet EfficientNetV2 adalah jenis jaringan saraf convolutional yang memiliki kecepatan pelatihan lebih cepat dan efisie

Sultan syach 1 Dec 28, 2021
Oriented Response Networks, in CVPR 2017

Oriented Response Networks [Home] [Project] [Paper] [Supp] [Poster] Torch Implementation The torch branch contains: the official torch implementation

ZhouYanzhao 217 Dec 12, 2022
For encoding a text longer than 512 tokens, for example 800. Set max_pos to 800 during both preprocessing and training.

LongScientificFormer For encoding a text longer than 512 tokens, for example 800. Set max_pos to 800 during both preprocessing and training. Some code

Athar Sefid 6 Nov 02, 2022
The Submission for SIMMC 2.0 Challenge 2021

The Submission for SIMMC 2.0 Challenge 2021 challenge website Requirements python 3.8.8 pytorch 1.8.1 transformers 4.8.2 apex for multi-gpu nltk Prepr

5 Jul 26, 2022
Evolution Strategies in PyTorch

Evolution Strategies This is a PyTorch implementation of Evolution Strategies. Requirements Python 3.5, PyTorch = 0.2.0, numpy, gym, universe, cv2 Wh

Andrew Gambardella 333 Nov 14, 2022
Semi-Supervised Signed Clustering Graph Neural Network (and Implementation of Some Spectral Methods)

SSSNET SSSNET: Semi-Supervised Signed Network Clustering For details, please read our paper. Environment Setup Overview The project has been tested on

Yixuan He 9 Nov 24, 2022
BBB streaming without Xorg and Pulseaudio and Chromium and other nonsense (heavily WIP)

BBB Streamer NG? Makes a conference like this... ...streamable like this! I also recorded a small video showing the basic features: https://www.youtub

Lukas Schauer 60 Oct 21, 2022
1st Solution For ICDAR 2021 Competition on Mathematical Formula Detection

This project releases our 1st place solution on ICDAR 2021 Competition on Mathematical Formula Detection. We implement our solution based on MMDetection, which is an open source object detection tool

yuxzho 94 Dec 25, 2022
A chemical analysis of lipophilicities & molecule drawings including ML

A chemical analysis of lipophilicity & molecule drawings including a bit of ML analysis. This is a simple project that includes two Jupyter files (one

Aurimas A. Nausėdas 7 Nov 22, 2022
PyTorch implementation of the WarpedGANSpace: Finding non-linear RBF paths in GAN latent space (ICCV 2021)

Authors official PyTorch implementation of the "WarpedGANSpace: Finding non-linear RBF paths in GAN latent space" [ICCV 2021].

Christos Tzelepis 100 Dec 06, 2022
(CVPR 2022 Oral) Official implementation for "Surface Representation for Point Clouds"

RepSurf - Surface Representation for Point Clouds [CVPR 2022 Oral] By Haoxi Ran* , Jun Liu, Chengjie Wang ( * : corresponding contact) The pytorch off

Haoxi Ran 264 Dec 23, 2022
Sibur challange 2021 competition - 6 place

sibur challange 2021 Решение на 6 место: https://sibur.ai-community.com/competitions/5/tasks/13 Скор 1.4066/1.4159 public/private. Архитектура - однос

Ivan 5 Jan 11, 2022
Node-level Graph Regression with Deep Gaussian Process Models

Node-level Graph Regression with Deep Gaussian Process Models Prerequests our implementation is mainly based on tensorflow 1.x and gpflow 1.x: python

1 Jan 16, 2022