Neural Magic Eye: Learning to See and Understand the Scene Behind an Autostereogram, arXiv:2012.15692.

Overview

Neural Magic Eye

Preprint | Project Page | Colab Runtime

Official PyTorch implementation of the preprint paper "NeuralMagicEye: Learning to See and Understand the Scene Behind an Autostereogram", arXiv:2012.15692.

An autostereogram, a.k.a. magic eye image, is a single-image stereogram that can create visual illusions of 3D scenes from 2D textures. This paper studies an interesting question that whether a deep CNN can be trained to recover the depth behind an autostereogram and understand its content. The key to the autostereogram magic lies in the stereopsis - to solve such a problem, a model has to learn to discover and estimate disparity from the quasi-periodic textures. We show that deep CNNs embedded with disparity convolution, a novel convolutional layer proposed in this paper that simulates stereopsis and encodes disparity, can nicely solve such a problem after being sufficiently trained on a large 3D object dataset in a self-supervised fashion. We refer to our method as "NeuralMagicEye". Experiments show that our method can accurately recover the depth behind autostereograms with rich details and gradient smoothness. Experiments also show the completely different working mechanisms for autostereogram perception between neural networks and human eyes. We hope this research can help people with visual impairments and those who have trouble viewing autostereograms.

In this repository, we provide the complete training/inference implementation of our paper based on Pytorch and provide several demos that can be used for reproducing the results reported in our paper. With the code, you can also try on your own data by following the instructions below.

The implementation of the UNet architecture in our code is partially adapted from the project pytorch-CycleGAN-and-pix2pix.

License

See the LICENSE file for license rights and limitations (MIT).

One-min video result

IMAGE ALT TEXT HERE

Requirements

See Requirements.txt.

Setup

  1. Clone this repo:
git clone https://github.com/jiupinjia/neural-magic-eye.git 
cd neural-magic-eye
  1. Download our pretrained autostereogram decoding network from the Google Drive, and unzip them to the repo directory.
unzip checkpoints_decode_sp_u256_bn_df.zip

To reproduce our results

Decoding autostereograms

python demo_decode_image.py --in_folder ./test_images --out_folder ./decode_output --net_G unet_256 --norm_type batch --with_disparity_conv --in_size 256 --checkpoint_dir ./checkpoints_decode_sp_u256_bn_df

Decoding autostereograms (animated)

  • Stanford Bunny

python demo_decode_animated.py --in_file ./test_videos/bunny.mp4 --out_folder ./decode_output --net_G unet_256 --norm_type batch --with_disparity_conv --in_size 256 --checkpoint_dir ./checkpoints_decode_sp_u256_bn_df
  • Stanford Armadillo

python demo_decode_animated.py --in_file ./test_videos/bunny.mp4 --out_folder ./decode_output --net_G unet_256 --norm_type batch --with_disparity_conv --in_size 256 --checkpoint_dir ./checkpoints_decode_sp_u256_bn_df

Google Colab

Here we also provide a minimal working example of the inference runtime of our method. Check out this link and see your result on Colab.

To retrain your decoding/classification model

If you want to retrain our model, or want to try a different network configuration, you will first need to download our experimental dataset and then unzip it to the repo directory.

unzip datasets.zip

Note that to build the training pipeline, you will need a set of depth images and background textures, which are already there included in our pre-processed dataset (see folders ./dataset/ShapeNetCore.v2 and ./dataset/Textures for more details). The autostereograms will be generated on the fly during the training process.

In the following, we provide several examples for training our decoding/classification models with different configurations. Particularly, if you are interested in exploring different network architectures, you can check out --net_G , --norm_type , --with_disparity_conv and --with_skip_connection for more details.

To train the decoding network (on mnist dataset, unet_64 + bn, without disparity_conv)

python train_decoder.py --dataset mnist --net_G unet_64 --in_size 64 --batch_size 32 --norm_type batch --checkpoint_dir ./checkpoints_your_model_name_here --vis_dir ./val_out_your_model_name_here

To train the decoding network (on shapenet dataset, resnet18 + in + disparity_conv + fpn)

python train_decoder.py --dataset shapenet --net_G resnet18fcn --in_size 128 --batch_size 32 --norm_type instance --with_disparity_conv --with_skip_connection --checkpoint_dir ./checkpoints_your_model_name_here --vis_dir ./val_out_your_model_name_here

To train the watermark decoding model (unet256 + bn + disparity_conv)

python train_decoder.py --dataset watermarking --net_G unet_256 --in_size 256 --batch_size 16 --norm_type batch --with_disparity_conv --checkpoint_dir ./checkpoints_your_model_name_here --vis_dir ./val_out_your_model_name_here

To train the classification network (on mnist dataset, resnet18 + in + disparity_conv)

python train_classifier.py --dataset mnist --net_G resnet18 --in_size 64 --batch_size 32 --norm_type instance --with_disparity_conv --checkpoint_dir ./checkpoints_your_model_name_here --vis_dir ./val_out_your_model_name_here

To train the classification network (on shapenet dataset, resnet18 + bn + disparity_conv)

python train_classifier.py --dataset shapenet --net_G resnet18 --in_size 64 --batch_size 32 --norm_type batch --with_disparity_conv --checkpoint_dir ./checkpoints_your_model_name_here --vis_dir ./val_out_your_model_name_here

Network architectures and performance

In the following, we show the decoding/classification accuracy with different model architectures. We hope these statistics can help you if you want to build your own model.

Citation

If you use our code for your research, please cite the following paper:

@misc{zou2020neuralmagiceye,
      title={NeuralMagicEye: Learning to See and Understand the Scene Behind an Autostereogram}, 
      author={Zhengxia Zou and Tianyang Shi and Yi Yuan and Zhenwei Shi},
      year={2020},
      eprint={2012.15692},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
Zhengxia Zou
Postdoc at the University of Michigan. Research interest: computer vision and applications in remote sensing, self-driving, and video games.
Zhengxia Zou
Bottleneck Transformers for Visual Recognition

Bottleneck Transformers for Visual Recognition Experiments Model Params (M) Acc (%) ResNet50 baseline (ref) 23.5M 93.62 BoTNet-50 18.8M 95.11% BoTNet-

Myeongjun Kim 236 Jan 03, 2023
DECA: Detailed Expression Capture and Animation (SIGGRAPH 2021)

DECA: Detailed Expression Capture and Animation (SIGGRAPH2021) input image, aligned reconstruction, animation with various poses & expressions This is

Yao Feng 1.5k Jan 02, 2023
Code release for Local Light Field Fusion at SIGGRAPH 2019

Local Light Field Fusion Project | Video | Paper Tensorflow implementation for novel view synthesis from sparse input images. Local Light Field Fusion

1.1k Dec 27, 2022
Artifacts for paper "MMO: Meta Multi-Objectivization for Software Configuration Tuning"

MMO: Meta Multi-Objectivization for Software Configuration Tuning This repository contains the data and code for the following paper that is currently

0 Nov 17, 2021
Referring Video Object Segmentation

Awesome-Referring-Video-Object-Segmentation Welcome to starts ⭐ & comments 💹 & sharing 😀 !! - 2021.12.12: Recent papers (from 2021) - welcome to ad

Explorer 57 Dec 11, 2022
Leaderboard and Visualization for RLCard

RLCard Showdown This is the GUI support for the RLCard project and DouZero project. RLCard-Showdown provides evaluation and visualization tools to hel

Data Analytics Lab at Texas A&M University 246 Dec 26, 2022
A numpy-based implementation of RANSAC for fundamental matrix and homography estimation. The degeneracy updating and local optimization components are included and optional.

Description A numpy-based implementation of RANSAC for fundamental matrix and homography estimation. The degeneracy updating and local optimization co

AoxiangFan 9 Nov 10, 2022
Deeplab-resnet-101 in Pytorch with Jaccard loss

Deeplab-resnet-101 Pytorch with Lovász hinge loss Train deeplab-resnet-101 with binary Jaccard loss surrogate, the Lovász hinge, as described in http:

Maxim Berman 95 Apr 15, 2022
PyTorch implementation of "PatchGame: Learning to Signal Mid-level Patches in Referential Games" to appear in NeurIPS 2021

PatchGame: Learning to Signal Mid-level Patches in Referential Games This repository is the official implementation of the paper - "PatchGame: Learnin

Kamal Gupta 22 Mar 16, 2022
SegTransVAE: Hybrid CNN - Transformer with Regularization for medical image segmentation

SegTransVAE: Hybrid CNN - Transformer with Regularization for medical image segmentation This repo is the official implementation for SegTransVAE. Seg

Nguyen Truong Hai 4 Aug 04, 2022
reimpliment of DFANet: Deep Feature Aggregation for Real-Time Semantic Segmentation

DFANet This repo is an unofficial pytorch implementation of DFANet:Deep Feature Aggregation for Real-Time Semantic Segmentation log 2019.4.16 After 48

shen hui xiang 248 Oct 21, 2022
links and status of cool gradio demos

awesome-demos This is a list of some wonderful demos & applications built with Gradio. Here's how to contribute yours! 🖊️ Natural language processing

Gradio 96 Dec 30, 2022
Graph Analysis From Scratch

Graph Analysis From Scratch Goal In this notebook we wanted to implement some functionalities to analyze a weighted graph only by using algorithms imp

Arturo Ghinassi 0 Sep 17, 2022
Code for our ALiBi method for transformer language models.

Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation This repository contains the code and models for our paper Tra

Ofir Press 211 Dec 31, 2022
My course projects for the 2021 Spring Machine Learning course at the National Taiwan University (NTU)

ML2021Spring There are my projects for the 2021 Spring Machine Learning course at the National Taiwan University (NTU) Course Web : https://speech.ee.

Ding-Li Chen 15 Aug 29, 2022
My implementation of Fully Convolutional Neural Networks in Keras

Keras-FCN This repository contains my implementation of Fully Convolutional Networks in Keras (Tensorflow backend). Currently, semantic segmentation c

The Duy Nguyen 15 Jan 13, 2020
FlingBot: The Unreasonable Effectiveness of Dynamic Manipulations for Cloth Unfolding

This repository contains code for training and evaluating FlingBot in both simulation and real-world settings on a dual-UR5 robot arm setup for Ubuntu 18.04

Columbia Artificial Intelligence and Robotics Lab 70 Dec 06, 2022
Codes for "Solving Long-tailed Recognition with Deep Realistic Taxonomic Classifier"

Deep-RTC [project page] This repository contains the source code accompanying our ECCV 2020 paper. Solving Long-tailed Recognition with Deep Realistic

Gina Wu 16 May 26, 2022
[ECCV2020] Content-Consistent Matching for Domain Adaptive Semantic Segmentation

[ECCV20] Content-Consistent Matching for Domain Adaptive Semantic Segmentation This is a PyTorch implementation of CCM. News: GTA-4K list is available

Guangrui Li 88 Aug 25, 2022
Robust & Reliable Route Recommendation on Road Networks

NeuroMLR: Robust & Reliable Route Recommendation on Road Networks This repository is the official implementation of NeuroMLR: Robust & Reliable Route

4 Dec 20, 2022