Face Identity Disentanglement via Latent Space Mapping [SIGGRAPH ASIA 2020]

Overview

Face Identity Disentanglement via Latent Space Mapping

Description

Official Implementation of the paper Face Identity Disentanglement via Latent Space Mapping for both training and evaluation.

Face Identity Disentanglement via Latent Space Mapping
Yotam Nitzan1, Amit Bermano1, Yangyan Li2, Daniel Cohen-Or1
1Tel-Aviv University, 2Alibaba
https://arxiv.org/abs/2005.07728

Abstract: Learning disentangled representations of data is a fundamental problem in artificial intelligence. Specifically, disentangled latent representations allow generative models to control and compose the disentangled factors in the synthesis process. Current methods, however, require extensive supervision and training, or instead, noticeably compromise quality. In this paper, we present a method that learns how to represent data in a disentangled way, with minimal supervision, manifested solely using available pre-trained networks. Our key insight is to decouple the processes of disentanglement and synthesis, by employing a leading pre-trained unconditional image generator, such as StyleGAN. By learning to map into its latent space, we leverage both its state-of-the-art quality, and its rich and expressive latent space, without the burden of training it. We demonstrate our approach on the complex and high dimensional domain of human heads. We evaluate our method qualitatively and quantitatively, and exhibit its success with de-identification operations and with temporal identity coherency in image sequences. Through extensive experimentation, we show that our method successfully disentangles identity from other facial attributes, surpassing existing methods, even though they require more training and supervision.

Setup

To setup everything you need check out the setup instructions.

Training

Preparing the Dataset

The dataset is comprised of StyleGAN-generated images and W latent codes, both are generated from a single StyleGAN model.

We also use real images from FFHQ to evaluate quality at test time.

The dataset is assumed to be in the following structure:

Path Description
base directory Directory for all datasets
├  real FFHQ image dataset
├  dataset_N dataset for resolution NxN
│  ├  images images generated by StyleGAN
│  └  ws W latent codes generated by StyleGAN

To generate the dataset_N directory, run:

cd utils\
python generate_fake_data.py \ 
    --resolution N \
    --batch_size BATCH_SIZE \
    --output_path OUTPUT_PATH \
    --pretrained_models_path PRETRAINED_MODELS_PATH \
    --num_images NUM_IMAGES \
    --gpu GPU

It will generate an image dataset in similar format to FFHQ.

Start training

To train the model as done in the paper

python main.py
    NAME
    --resolution N
    --pretrained_models_path PRETRAINED_MODELS_PATH
    --dataset BASE_DATASET_DIR
    --batch_size BATCH_SIZE
    --cross_frequency 3
    --train_data_size 70000
    --results_dir RESULTS_DIR        

Please run python main.py -h for more details.

Inference

For convenience, there are a few inference functions - each serving a different use case. The functions are resolved using the name of the function.

All possible combinations in dirs

Input data: Two directories, one identity inputs and another for attribute inputs.
Runs over all N*M combinations in two directories.

python test.py 
    Name
    --pretrained_models_path PRETRAINED_MODELS_PATH \
    --load_checkpoint PATH_TO_WEIGHTS \
    --id_dir DIR_OF_IMAGES_FOR_ID \
    --attr_dir DIR_OF_IMAGES_FOR_ATTR \
    --output_dir DIR_FOR_OUTPUTS \
    --test_func infer_on_dirs

Paired data

Input data: Two directories, one identity inputs and another for attribute inputs.
The two directories are assumed to be paired. Inference runs on images with the same names.

python test.py 
    Name
    --pretrained_models_path PRETRAINED_MODELS_PATH \
    --load_checkpoint PATH_TO_WEIGHTS \
    --id_dir DIR_OF_IMAGES_FOR_ID \
    --attr_dir DIR_OF_IMAGES_FOR_ATTR \
    --output_dir DIR_FOR_OUTPUTS \
    --test_func infer_pairs

Disentangled interpolation

Interpolating attributes

Interpolating identity

Input data: A directory with any number of subdirectories. In each subdir, there are three images. All images should have exactly one of attr or id in their name. If there are two attr images and one id image, it will interpolate attribute. If there is one attr images and two id images, it will interpolate identity.

python test.py 
    Name
    --pretrained_models_path PRETRAINED_MODELS_PATH \
    --load_checkpoint PATH_TO_WEIGHTS \
    --input_dir PARENT_DIR \
    --output_dir DIR_FOR_OUTPUTS \
    --test_func interpolate

Checkpoints

Our pretrained 256x256 checkpoint is also available.

Citation

If you use this code for your research, please cite our paper using:

@article{Nitzan2020FaceID,
  title={Face identity disentanglement via latent space mapping},
  author={Yotam Nitzan and A. Bermano and Yangyan Li and D. Cohen-Or},
  journal={ACM Transactions on Graphics (TOG)},
  year={2020},
  volume={39},
  pages={1 - 14}
}
COVID-Net Open Source Initiative

The COVID-Net models provided here are intended to be used as reference models that can be built upon and enhanced as new data becomes available

Linda Wang 1.1k Dec 26, 2022
Implementation of the state-of-the-art vision transformers with tensorflow

ViT Tensorflow This repository contains the tensorflow implementation of the state-of-the-art vision transformers (a category of computer vision model

Mohammadmahdi NouriBorji 2 Mar 16, 2022
SmallInitEmb - LayerNorm(SmallInit(Embedding)) in a Transformer to improve convergence

SmallInitEmb LayerNorm(SmallInit(Embedding)) in a Transformer I find that when t

PENG Bo 11 Dec 25, 2022
Implementation of ConvMixer for "Patches Are All You Need? 🤷"

Patches Are All You Need? 🤷 This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?" by Asher

CMU Locus Lab 934 Jan 08, 2023
Local Multi-Head Channel Self-Attention for FER2013

LHC-Net Local Multi-Head Channel Self-Attention This repository is intended to provide a quick implementation of the LHC-Net and to replicate the resu

12 Jan 04, 2023
Understanding and Improving Encoder Layer Fusion in Sequence-to-Sequence Learning (ICLR 2021)

Understanding and Improving Encoder Layer Fusion in Sequence-to-Sequence Learning (ICLR 2021) Citation Please cite as: @inproceedings{liu2020understan

Sunbow Liu 22 Nov 25, 2022
YOLOX-Paddle - A reproduction of YOLOX by PaddlePaddle

YOLOX-Paddle A reproduction of YOLOX by PaddlePaddle 数据集准备 下载COCO数据集,准备为如下路径 /ho

QuanHao Guo 6 Dec 18, 2022
Highway networks implemented in PyTorch.

PyTorch Highway Networks Highway networks implemented in PyTorch. Just the MNIST example from PyTorch hacked to work with Highway layers. Todo Make th

Conner Vercellino 56 Dec 14, 2022
A Python training and inference implementation of Yolov5 helmet detection in Jetson Xavier nx and Jetson nano

yolov5-helmet-detection-python A Python implementation of Yolov5 to detect head or helmet in the wild in Jetson Xavier nx and Jetson nano. In Jetson X

12 Dec 05, 2022
JUSTICE: A Benchmark Dataset for Supreme Court’s Judgment Prediction

JUSTICE: A Benchmark Dataset for Supreme Court’s Judgment Prediction CSCI 544 Final Project done by: Mohammed Alsayed, Shaayan Syed, Mohammad Alali, S

Smit Patel 3 Dec 28, 2022
Source code for "Pack Together: Entity and Relation Extraction with Levitated Marker"

PL-Marker Source code for Pack Together: Entity and Relation Extraction with Levitated Marker. Quick links Overview Setup Install Dependencies Data Pr

THUNLP 173 Dec 30, 2022
DeepFill v1/v2 with Contextual Attention and Gated Convolution, CVPR 2018, and ICCV 2019 Oral

Generative Image Inpainting An open source framework for generative image inpainting task, with the support of Contextual Attention (CVPR 2018) and Ga

2.9k Dec 16, 2022
Code for "FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation".

FPS-Net Code for "FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation", accepted by ISPRS journal of Photogrammetry

15 Nov 30, 2022
Molecular Sets (MOSES): A benchmarking platform for molecular generation models

Molecular Sets (MOSES): A benchmarking platform for molecular generation models Deep generative models are rapidly becoming popular for the discovery

Neelesh C A 3 Oct 14, 2022
Pytorch implementation for the Temporal and Object Quantification Networks (TOQ-Nets).

TOQ-Nets-PyTorch-Release Pytorch implementation for the Temporal and Object Quantification Networks (TOQ-Nets). Temporal and Object Quantification Net

Zhezheng Luo 9 Jun 30, 2022
AITom is an open-source platform for AI driven cellular electron cryo-tomography analysis.

AITom Introduction AITom is an open-source platform for AI driven cellular electron cryo-tomography analysis. AITom is originated from the tomominer l

93 Jan 02, 2023
PyTorch code for our paper "Attention in Attention Network for Image Super-Resolution"

Under construction... Attention in Attention Network for Image Super-Resolution (A2N) This repository is an PyTorch implementation of the paper "Atten

Haoyu Chen 71 Dec 30, 2022
Deep Learning Specialization by Andrew Ng, deeplearning.ai.

Deep Learning Specialization on Coursera Master Deep Learning, and Break into AI This is my personal projects for the course. The course covers deep l

Engen 1.5k Jan 07, 2023
Extremely simple and fast extreme multi-class and multi-label classifiers.

napkinXC napkinXC is an extremely simple and fast library for extreme multi-class and multi-label classification, that focus of implementing various m

Marek Wydmuch 43 Nov 14, 2022
Code for "Layered Neural Rendering for Retiming People in Video."

Layered Neural Rendering in PyTorch This repository contains training code for the examples in the SIGGRAPH Asia 2020 paper "Layered Neural Rendering

Google 154 Dec 16, 2022