(CVPR2021) Kaleido-BERT: Vision-Language Pre-training on Fashion Domain

Overview

Kaleido-BERT: Vision-Language Pre-training on Fashion Domain

Mingchen Zhuge*, Dehong Gao*, Deng-Ping Fan#, Linbo Jin, Ben Chen, Haoming Zhou, Minghui Qiu, Ling Shao.

[Paper][中文版][Video][Poster][MSRA_Slide][News1][New2][MSRA_Talking][机器之心_Talking]

License: MIT

Introduction

We present a new vision-language (VL) pre-training model dubbed Kaleido-BERT, which introduces a novel kaleido strategy for fashion cross-modality representations from transformers. In contrast to random masking strategy of recent VL models, we design alignment guided masking to jointly focus more on image-text semantic relations. To this end, we carry out five novel tasks, \ie, rotation, jigsaw, camouflage, grey-to-color, and blank-to-color for self-supervised VL pre-training at patches of different scale. Kaleido-BERT is conceptually simple and easy to extend to the existing BERT framework, it attains state-of-the-art results by large margins on four downstream tasks, including text retrieval ([email protected]: 4.03% absolute improvement), image retrieval ([email protected]: 7.13% abs imv.), category recognition (ACC: 3.28% abs imv.), and fashion captioning (Bleu4: 1.2 abs imv.). We validate the efficiency of Kaleido-BERT on a wide range of e-commercial websites, demonstrating its broader potential in real-world applications. framework

Noted

  1. Code will be released in 2021/4/16.
  2. This is the tensorflow implementation built on Alibaba/EasyTransfer. We will also release a Pytorch version built on Huggingface/Transformers in future.
  3. If you feel hard to download these datasets, please modify /dataset/get_pretrain_data.sh, /dataset/get_finetune_data.sh, /dataset/get_retrieve_data.sh, and comment out some wget #file_links as you want. This will not inhibit following implementation.

Get started

  1. Clone this code
git clone [email protected]:mczhuge/Kaleido-BERT.git
cd Kaleido-BERT
  1. Enviroment setup (Details can be found on conda_env.info)
conda create  --name kaleidobert --file conda_env.info
conda activate kaleidobert
conda install tensorflow==1.15.0
pip install boto3 tqdm tensorflow_datasets --index-url=https://mirrors.aliyun.com/pypi/simple/
pip install sentencepiece==0.1.92 sklearn --index-url=https://mirrors.aliyun.com/pypi/simple/
pip install joblib==0.14.1
python setup.py develop
  1. Download Pretrained Dependancy
cd Kaleido-BERT/scripts/checkpoint
sh get_checkpoint.sh
  1. Finetune
#Download finetune datasets

cd Kaleido-BERT/scripts/dataset
sh get_finetune_dataset.sh
sh get_retrieve_dataset.sh

#Testing CAT/SUB

cd Kaleido-BERT/scripts
sh run_cat.sh
sh run_subcat.sh

#Testing TIR/ITR

cd Kaleido-BERT/scripts
sh run_i2t.sh
sh run_t2i.sh
  1. Pre-training
#Download pre-training datasets

cd Kaleido-BERT/scripts/dataset
sh get_prtrain_dataset.sh

#Remove existed checkpoint
rm -rf Kaleido-BERT/checkpoint/pretrained

#Run pre-training
cd Kaleido-BERT/scripts/
sh run_pretrain.sh

Acknowlegement

Thanks Alibaba ICBU Search Team and Alibaba PAI Team for technical support.

Citing Kaleido-BERT

@inproceedings{Zhuge2021KaleidoBERT,
  title={Kaleido-BERT: Vision-Language Pre-training on Fashion Domain},
  author={Zhuge, Mingchen and Gao, Dehong and Fan, Deng-Ping and Jin, Linbo and Chen, Ben and Zhou, Haoming and Qiu, Minghui and Shao, Ling},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={},
  year={2021}
}

Contact

Feel free to contact us if you have additional questions.

Owner
Master Student of Computer Science, on Chinese University of Geoscience.
Pytorch implementation of "Training a 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet"

Token Labeling: Training an 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet (arxiv) This is a Pytorch implementation of our te

蒋子航 383 Dec 27, 2022
TLXZoo - Pre-trained models based on TensorLayerX

Pre-trained models based on TensorLayerX. TensorLayerX is a multi-backend AI fra

TensorLayer Community 13 Dec 07, 2022
Monitora la qualità della ricezione dei segnali radio nelle province siciliane.

FMap-server Monitora la qualità della ricezione dei segnali radio nelle province siciliane. Conversion data Frequency - StationName maps are stored in

Triglie 5 May 24, 2021
The official code of "SCROLLS: Standardized CompaRison Over Long Language Sequences".

SCROLLS This repository contains the official code of the paper: "SCROLLS: Standardized CompaRison Over Long Language Sequences". Links Official Websi

TAU NLP Group 39 Dec 23, 2022
An implementation of a discriminant function over a normal distribution to help classify datasets.

CS4044D Machine Learning Assignment 1 By Dev Sony, B180297CS The question, report and source code can be found here. Github Repo Solution 1 Based on t

Dev Sony 6 Nov 09, 2021
PyTorch code to run synthetic experiments.

Code repository for Invariant Risk Minimization Source code for the paper: @article{InvariantRiskMinimization, title={Invariant Risk Minimization}

Facebook Research 345 Dec 12, 2022
本步态识别系统主要基于GaitSet模型进行实现

本步态识别系统主要基于GaitSet模型进行实现。在尝试部署本系统之前,建立理解GaitSet模型的网络结构、训练和推理方法。 系统的实现效果如视频所示: 演示视频 由于模型较大,部分模型文件存储在百度云盘。 链接提取码:33mb 具体部署过程 1.下载代码 2.安装requirements.txt

16 Oct 22, 2022
Optimal Adaptive Allocation using Deep Reinforcement Learning in a Dose-Response Study

Optimal Adaptive Allocation using Deep Reinforcement Learning in a Dose-Response Study Supplementary Materials for Kentaro Matsuura, Junya Honda, Imad

Kentaro Matsuura 4 Nov 01, 2022
A graph-to-sequence model for one-step retrosynthesis and reaction outcome prediction.

Graph2SMILES A graph-to-sequence model for one-step retrosynthesis and reaction outcome prediction. 1. Environmental setup System requirements Ubuntu:

29 Nov 18, 2022
Request execution of Galaxy SARS-CoV-2 variation analysis workflows on input data you provide.

SARS-CoV-2 processing requests Request execution of Galaxy SARS-CoV-2 variation analysis workflows on input data you provide. Prerequisites This autom

useGalaxy.eu 17 Aug 13, 2022
Second Order Optimization and Curvature Estimation with K-FAC in JAX.

KFAC-JAX - Second Order Optimization with Approximate Curvature in JAX Installation | Quickstart | Documentation | Examples | Citing KFAC-JAX KFAC-JAX

DeepMind 90 Dec 22, 2022
Official implementation of "Intrinsic Dimension, Persistent Homology and Generalization in Neural Networks", NeurIPS 2021.

PHDimGeneralization Official implementation of "Intrinsic Dimension, Persistent Homology and Generalization in Neural Networks", NeurIPS 2021. Overvie

Tolga Birdal 13 Nov 08, 2022
Distilling Motion Planner Augmented Policies into Visual Control Policies for Robot Manipulation (CoRL 2021)

Distilling Motion Planner Augmented Policies into Visual Control Policies for Robot Manipulation [Project website] [Paper] This project is a PyTorch i

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 6 Feb 28, 2022
PyTorch implementation of D2C: Diffuison-Decoding Models for Few-shot Conditional Generation.

D2C: Diffuison-Decoding Models for Few-shot Conditional Generation Project | Paper PyTorch implementation of D2C: Diffuison-Decoding Models for Few-sh

Jiaming Song 90 Dec 27, 2022
基于Paddle框架的fcanet复现

fcanet-Paddle 基于Paddle框架的fcanet复现 fcanet 本项目基于paddlepaddle框架复现fcanet,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待 参考项目: frazerlin-fcanet 数据准备 本项目已挂

QuanHao Guo 7 Mar 07, 2022
Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt)

Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt) Task Training huge unsupervised deep neural networks yields to strong progress in

2 Aug 05, 2022
Repository to run object detection on a model trained on an autonomous driving dataset.

Autonomous Driving Object Detection on the Raspberry Pi 4 Description of Repository This repository contains code and instructions to configure the ne

Ethan 51 Nov 17, 2022
Self-Attention Between Datapoints: Going Beyond Individual Input-Output Pairs in Deep Learning

We challenge a common assumption underlying most supervised deep learning: that a model makes a prediction depending only on its parameters and the features of a single input. To this end, we introdu

OATML 360 Dec 28, 2022
JugLab 33 Dec 30, 2022
STRIVE: Scene Text Replacement In Videos

STRIVE: Scene Text Replacement In Videos Dataset Types: RoboText SynthText RealWorld videos RoboText : Videos of texts collected using navigation robo

15 Jul 11, 2022