(CVPR2021) Kaleido-BERT: Vision-Language Pre-training on Fashion Domain

Overview

Kaleido-BERT: Vision-Language Pre-training on Fashion Domain

Mingchen Zhuge*, Dehong Gao*, Deng-Ping Fan#, Linbo Jin, Ben Chen, Haoming Zhou, Minghui Qiu, Ling Shao.

[Paper][中文版][Video][Poster][MSRA_Slide][News1][New2][MSRA_Talking][机器之心_Talking]

License: MIT

Introduction

We present a new vision-language (VL) pre-training model dubbed Kaleido-BERT, which introduces a novel kaleido strategy for fashion cross-modality representations from transformers. In contrast to random masking strategy of recent VL models, we design alignment guided masking to jointly focus more on image-text semantic relations. To this end, we carry out five novel tasks, \ie, rotation, jigsaw, camouflage, grey-to-color, and blank-to-color for self-supervised VL pre-training at patches of different scale. Kaleido-BERT is conceptually simple and easy to extend to the existing BERT framework, it attains state-of-the-art results by large margins on four downstream tasks, including text retrieval ([email protected]: 4.03% absolute improvement), image retrieval ([email protected]: 7.13% abs imv.), category recognition (ACC: 3.28% abs imv.), and fashion captioning (Bleu4: 1.2 abs imv.). We validate the efficiency of Kaleido-BERT on a wide range of e-commercial websites, demonstrating its broader potential in real-world applications. framework

Noted

  1. Code will be released in 2021/4/16.
  2. This is the tensorflow implementation built on Alibaba/EasyTransfer. We will also release a Pytorch version built on Huggingface/Transformers in future.
  3. If you feel hard to download these datasets, please modify /dataset/get_pretrain_data.sh, /dataset/get_finetune_data.sh, /dataset/get_retrieve_data.sh, and comment out some wget #file_links as you want. This will not inhibit following implementation.

Get started

  1. Clone this code
git clone [email protected]:mczhuge/Kaleido-BERT.git
cd Kaleido-BERT
  1. Enviroment setup (Details can be found on conda_env.info)
conda create  --name kaleidobert --file conda_env.info
conda activate kaleidobert
conda install tensorflow==1.15.0
pip install boto3 tqdm tensorflow_datasets --index-url=https://mirrors.aliyun.com/pypi/simple/
pip install sentencepiece==0.1.92 sklearn --index-url=https://mirrors.aliyun.com/pypi/simple/
pip install joblib==0.14.1
python setup.py develop
  1. Download Pretrained Dependancy
cd Kaleido-BERT/scripts/checkpoint
sh get_checkpoint.sh
  1. Finetune
#Download finetune datasets

cd Kaleido-BERT/scripts/dataset
sh get_finetune_dataset.sh
sh get_retrieve_dataset.sh

#Testing CAT/SUB

cd Kaleido-BERT/scripts
sh run_cat.sh
sh run_subcat.sh

#Testing TIR/ITR

cd Kaleido-BERT/scripts
sh run_i2t.sh
sh run_t2i.sh
  1. Pre-training
#Download pre-training datasets

cd Kaleido-BERT/scripts/dataset
sh get_prtrain_dataset.sh

#Remove existed checkpoint
rm -rf Kaleido-BERT/checkpoint/pretrained

#Run pre-training
cd Kaleido-BERT/scripts/
sh run_pretrain.sh

Acknowlegement

Thanks Alibaba ICBU Search Team and Alibaba PAI Team for technical support.

Citing Kaleido-BERT

@inproceedings{Zhuge2021KaleidoBERT,
  title={Kaleido-BERT: Vision-Language Pre-training on Fashion Domain},
  author={Zhuge, Mingchen and Gao, Dehong and Fan, Deng-Ping and Jin, Linbo and Chen, Ben and Zhou, Haoming and Qiu, Minghui and Shao, Ling},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={},
  year={2021}
}

Contact

Feel free to contact us if you have additional questions.

Owner
Master Student of Computer Science, on Chinese University of Geoscience.
PyTorch code for Composing Partial Differential Equations with Physics-Aware Neural Networks

FInite volume Neural Network (FINN) This repository contains the PyTorch code for models, training, and testing, and Python code for data generation t

Cognitive Modeling 20 Dec 18, 2022
Non-Attentive-Tacotron - This is Pytorch Implementation of Google's Non-attentive Tacotron.

Non-attentive Tacotron - PyTorch Implementation This is Pytorch Implementation of Google's Non-attentive Tacotron, text-to-speech system. There is som

Jounghee Kim 46 Dec 19, 2022
免费获取http代理并生成proxifier配置文件

freeproxy 免费获取http代理并生成proxifier配置文件 公众号:台下言书 工具说明:https://mp.weixin.qq.com/s?__biz=MzIyNDkwNjQ5Ng==&mid=2247484425&idx=1&sn=56ccbe130822aa35038095317

说书人 32 Mar 25, 2022
Optimizing DR with hard negatives and achieving SOTA first-stage retrieval performance on TREC DL Track (SIGIR 2021 Full Paper).

Optimizing Dense Retrieval Model Training with Hard Negatives Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, Shaoping Ma This repo provi

Jingtao Zhan 99 Dec 27, 2022
A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run.

Minimal Hand A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run. This project provides the

Yuxiao Zhou 824 Jan 07, 2023
This is the code for Compressing BERT: Studying the Effects of Weight Pruning on Transfer Learning

This is the code for Compressing BERT: Studying the Effects of Weight Pruning on Transfer Learning It includes /bert, which is the original BERT repos

Mitchell Gordon 11 Nov 15, 2022
Context Decoupling Augmentation for Weakly Supervised Semantic Segmentation

Context Decoupling Augmentation for Weakly Supervised Semantic Segmentation The code of: Context Decoupling Augmentation for Weakly Supervised Semanti

54 Dec 12, 2022
Keras + Hyperopt: A very simple wrapper for convenient hyperparameter optimization

This project is now archived. It's been fun working on it, but it's time for me to move on. Thank you for all the support and feedback over the last c

Max Pumperla 2.1k Jan 03, 2023
Learning to Adapt Structured Output Space for Semantic Segmentation, CVPR 2018 (spotlight)

Learning to Adapt Structured Output Space for Semantic Segmentation Pytorch implementation of our method for adapting semantic segmentation from the s

Yi-Hsuan Tsai 782 Dec 30, 2022
MOOSE (Multi-organ objective segmentation) a data-centric AI solution that generates multilabel organ segmentations to facilitate systemic TB whole-person research

MOOSE (Multi-organ objective segmentation) a data-centric AI solution that generates multilabel organ segmentations to facilitate systemic TB whole-person research.The pipeline is based on nn-UNet an

QIMP team 30 Jan 01, 2023
Deep Residual Learning for Image Recognition

Deep Residual Learning for Image Recognition This is a Torch implementation of "Deep Residual Learning for Image Recognition",Kaiming He, Xiangyu Zhan

Kimmy 561 Dec 01, 2022
Multiple-Object Tracking with Transformer

TransTrack: Multiple-Object Tracking with Transformer Introduction TransTrack: Multiple-Object Tracking with Transformer Models Training data Training

Peize Sun 537 Jan 04, 2023
Code accompanying "Dynamic Neural Relational Inference" from CVPR 2020

Code accompanying "Dynamic Neural Relational Inference" This codebase accompanies the paper "Dynamic Neural Relational Inference" from CVPR 2020. This

Colin Graber 48 Dec 23, 2022
Simultaneous Demand Prediction and Planning

Simultaneous Demand Prediction and Planning Dependencies Python packages: Pytorch, scikit-learn, Pandas, Numpy, PyYAML Data POI: data/poi Road network

Yizong Wang 1 Sep 01, 2022
Generating Anime Images by Implementing Deep Convolutional Generative Adversarial Networks paper

AnimeGAN - Deep Convolutional Generative Adverserial Network PyTorch implementation of DCGAN introduced in the paper: Unsupervised Representation Lear

Rohit Kukreja 23 Jul 21, 2022
Implementation of the pix2pix model on satellite images

This repo shows how to implement and use the pix2pix GAN model for image to image translation. The model is demonstrated on satellite images, and the

3 May 24, 2022
Code Release for ICCV 2021 (oral), "AdaFit: Rethinking Learning-based Normal Estimation on Point Clouds"

AdaFit: Rethinking Learning-based Normal Estimation on Point Clouds (ICCV 2021 oral) **Project Page | Arxiv ** Runsong Zhu¹, Yuan Liu², Zhen Dong¹, Te

40 Dec 30, 2022
A Benchmark For Measuring Systematic Generalization of Multi-Hierarchical Reasoning

Orchard Dataset This repository contains the code used for generating the Orchard Dataset, as seen in the Multi-Hierarchical Reasoning in Sequences: S

Bill Pung 1 Jun 05, 2022
Probabilistic Cross-Modal Embedding (PCME) CVPR 2021

Probabilistic Cross-Modal Embedding (PCME) CVPR 2021 Official Pytorch implementation of PCME | Paper Sanghyuk Chun1 Seong Joon Oh1 Rafael Sampaio de R

NAVER AI 87 Dec 21, 2022
"Exploring Vision Transformers for Fine-grained Classification" at CVPRW FGVC8

FGVC8 Exploring Vision Transformers for Fine-grained Classification paper presented at the CVPR 2021, The Eight Workshop on Fine-Grained Visual Catego

Marcos V. Conde 19 Dec 06, 2022