Alternatives to Deep Neural Networks for Function Approximations in Finance

Related tags

Deep Learningaltnnpub
Overview

Alternatives to Deep Neural Networks for Function Approximations in Finance

Code companion repo

Overview

This is a repository of Python code to go with our paper whose details could be found below

We provide our implementations of the generalized stochastic sampling (gSS) and functional Tensor Train (fTT) algorithms from the paper, and related routines. This is a somewhat simplified version of the code that produced the test results that we reported. Simplifications were made to improve clarity and increase general didactic value, at a (small) expense of cutting out some of the secondary tricks and variations.

The code is released under the MIT License

Installing the code

You do not have to install this package once you have downloaded it -- see the next section on how to use it without any installation. But if you want to call our routines from a different project or directory, execute the following (note you need to run this from altnnpub directory, assuming this is the root of the project directory -- the directory where this file that you are reading is located)

altnnpub>pip install -e .

Then you can call various methods from your code like this

from nnu import gss_kernels
kernel = gss_kernels.global_kernel_dict(1.0)['invquad']
...

to uninstall the package, run (from anywhere)

blah>pip uninstall altnnpub

Running the code

The main entry point to the code is main.py in ./nnu folder. Assuming the project directory is called altnnpub, the code is run via Python module syntax

altnnpub>python -m nnu.main

Various options such as which functions to fit, which models to use, and so on can be set in main.py

Results are reported in the terminal and are also stored in ./results directory

All of our (non-test) Python code is in ./nnu directory

Jupyter notebooks

We provide a number of notebooks that demonstrate, at varying levels of detail, how to build and use certain models

  • ftt_als_01.ipynb: Functional Tensor Train (fTT) approximation using the Alternating Least Squares (ALS) algorithm
  • functional_2D_low_rank_01.ipynb: Low-rank functional approximation of 2D functions done manually. This is an illustrative example of ALS applied to calculate successive rank-1 approximations, as described in the paper
  • gss_example_keras_direct_01.ipynb: Create and test the generalized Stochastic Sampling (gSS) model. In this notebook do it "by hand", ie using granular interfaces such as the Keras functional interface. Here we create a hidim version of the model with the Adam optimizer for the frequency bounds (aka scales) and linear regression for the outer (linear) weights
  • gss_example_model_factory_01.ipynb: Create and test the generalized Stochastic Sampling (gSS) model. This notebook uses gss_model_factory and other higher-level interfaces that the main entry point (./nnu/main.py) eventually calls. We create a onedim version of the model with a one-dim optimizer for the frequency bounds (aka scales) and linear regression for the outer (linear) weights

Test suite

Unit tests are collected in ./test directory and provide useful examples of how different parts of the code can be used. The test suite can be run in the standard Python way using pytest, e.g. from the comamnd line at the project root directory:

altnnpub>pytest

Pytest is installed with pip install pytest command

Individual tests can be run using a pytest -k test_blah type command, which could be useful for debugging. This is all very well explained in pytest documentation

Tests are there predominantly to show how to call certain functions. They mostly test that the code simply runs rather than testing numbers, etc. except for tests in test_gss_report_generator.py where actual fitting results are compared to the expected ones. Tests produce various output that could be interesting to see -- option pytest -s will print out whatever the tests are printing out

Requirements

The code has been tested with Python 3.7 and 3.8. See requirements.txt for required packages

Contacting us

Our contact details are in the SSRN link below

Details of the paper

Antonov, Alexandre and Piterbarg, Vladimir, Alternatives to Deep Neural Networks for Function Approximations in Finance (November 7, 2021). Available at SSRN: https://ssrn.com/abstract=3958331 or http://dx.doi.org/10.2139/ssrn.3958331

A research toolkit for particle swarm optimization in Python

PySwarms is an extensible research toolkit for particle swarm optimization (PSO) in Python. It is intended for swarm intelligence researchers, practit

Lj Miranda 1k Dec 30, 2022
Post-Training Quantization for Vision transformers.

PTQ4ViT Post-Training Quantization Framework for Vision Transformers. We use the twin uniform quantization method to reduce the quantization error on

Zhihang Yuan 61 Dec 28, 2022
Unsupervised phone and word segmentation using dynamic programming on self-supervised VQ features.

Unsupervised Phone and Word Segmentation using Vector-Quantized Neural Networks Overview Unsupervised phone and word segmentation on speech data is pe

Herman Kamper 13 Dec 11, 2022
Code for Neural-GIF: Neural Generalized Implicit Functions for Animating People in Clothing(ICCV21)

NeuralGIF Code for Neural-GIF: Neural Generalized Implicit Functions for Animating People in Clothing(ICCV21) We present Neural Generalized Implicit F

Garvita Tiwari 104 Nov 18, 2022
Pgn2tex - Scripts to convert pgn files to latex document. Useful to build books or pdf from pgn studies

Pgn2Latex (WIP) A simple script to make pdf from pgn files and studies. It's sti

12 Jul 23, 2022
Computationally efficient algorithm that identifies boundary points of a point cloud.

BoundaryTest Included are MATLAB and Python packages, each of which implement efficient algorithms for boundary detection and normal vector estimation

6 Dec 09, 2022
[CVPR 2021] Teachers Do More Than Teach: Compressing Image-to-Image Models (CAT)

CAT arXiv Pytorch implementation of our method for compressing image-to-image models. Teachers Do More Than Teach: Compressing Image-to-Image Models Q

Snap Research 160 Dec 09, 2022
The Instructed Glacier Model (IGM)

The Instructed Glacier Model (IGM) Overview The Instructed Glacier Model (IGM) simulates the ice dynamics, surface mass balance, and its coupling thro

27 Dec 16, 2022
Source for the paper "Universal Activation Function for machine learning"

Universal Activation Function Tensorflow and Pytorch source code for the paper Yuen, Brosnan, Minh Tu Hoang, Xiaodai Dong, and Tao Lu. "Universal acti

4 Dec 03, 2022
MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera

MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera

Felix Wimbauer 494 Jan 06, 2023
Algorithmic trading with deep learning experiments

Deep-Trading Algorithmic trading with deep learning experiments. Now released part one - simple time series forecasting. I plan to implement more soph

Alex Honchar 1.4k Jan 02, 2023
Change Detection in SAR Images Based on Multiscale Capsule Network

SAR_CD_MS_CapsNet Code for the paper "Change Detection in SAR Images Based on Multiscale Capsule Network" , IEEE Geoscience and Remote Sensing Letters

Feng Gao 21 Nov 29, 2022
MiniSom is a minimalistic implementation of the Self Organizing Maps

MiniSom Self Organizing Maps MiniSom is a minimalistic and Numpy based implementation of the Self Organizing Maps (SOM). SOM is a type of Artificial N

Giuseppe Vettigli 1.2k Jan 03, 2023
🐦 Quickly annotate data from the comfort of your Jupyter notebook

🐦 pigeon - Quickly annotate data on Jupyter Pigeon is a simple widget that lets you quickly annotate a dataset of unlabeled examples from the comfort

Anastasis Germanidis 647 Jan 05, 2023
PAMI stands for PAttern MIning. It constitutes several pattern mining algorithms to discover interesting patterns in transactional/temporal/spatiotemporal databases

Introduction PAMI stands for PAttern MIning. It constitutes several pattern mining algorithms to discover interesting patterns in transactional/tempor

RAGE UDAY KIRAN 43 Jan 08, 2023
This is the official Pytorch-version code of FlatGCN (Flattened Graph Convolutional Networks for Recommendation).

FlatGCN This is the official Pytorch-version code of FlatGCN (Flattened Graph Convolutional Networks for Recommendation, submitted to ICASSP2022). Req

Dreamer 2 Aug 09, 2022
Controlling Hill Climb Racing with Hand Tacking

Controlling Hill Climb Racing with Hand Tacking Opened Palm for Gas Closed Palm for Brake

Rohit Ingole 3 Jan 18, 2022
Using this codebase as a tool for my own research. Making some modifications to the original repo for my own purposes.

For SwapNet Create a list.txt file containing all the images to process. This can be done with the GNU find command: find path/to/input/folder -name '

Andrew Jong 2 Nov 10, 2021
Beta Shapley: a Unified and Noise-reduced Data Valuation Framework for Machine Learning

Beta Shapley: a Unified and Noise-reduced Data Valuation Framework for Machine Learning This repository provides an implementation of the paper Beta S

Yongchan Kwon 28 Nov 10, 2022
Code for IntraQ, PyTorch implementation of our paper under review

IntraQ: Learning Synthetic Images with Intra-Class Heterogeneity for Zero-Shot Network Quantization paper Requirements Python = 3.7.10 Pytorch == 1.7

1 Nov 19, 2021