Set of models for classifcation of 3D volumes

Overview

Classification models 3D Zoo - Keras and TF.Keras

This repository contains 3D variants of popular CNN models for classification like ResNets, DenseNets, VGG, etc. It also contains weights obtained by converting ImageNet weights from the same 2D models.

This repository is based on great classification_models repo by @qubvel

Architectures:

Installation

pip install classification-models-3D

Examples

Loading model with imagenet weights:
# for keras
from classification_models_3D.keras import Classifiers

# for tensorflow.keras
# from classification_models_3D.tfkeras import Classifiers

ResNet18, preprocess_input = Classifiers.get('resnet18')
model = ResNet18(input_shape=(128, 128, 128, 3), weights='imagenet')

All possible nets for Classifiers.get() method: 'resnet18, 'resnet34', 'resnet50', 'resnet101', 'resnet152', 'seresnet18', 'seresnet34', 'seresnet50', 'seresnet101', 'seresnet152', 'seresnext50', 'seresnext101', 'senet154', 'resnext50', 'resnext101', 'vgg16', 'vgg19', 'densenet121', 'densenet169', 'densenet201', 'inceptionresnetv2', 'inceptionv3', 'mobilenet', 'mobilenetv2'

Convert imagenet weights (2D -> 3D)

Code to convert 2D imagenet weights to 3D variant is available here: convert_imagenet_weights_to_3D_models.py. Weights were obtained with TF2, but works OK with Keras + TF1 as well.

How to choose input shape

If initial 2D model had shape (512, 512, 3) then you can use shape (D, H, W, 3) where D * H * W ~= 512*512, so something like (64, 64, 64, 3) will be ok.

Training with single NVIDIA 1080Ti (11 GB) worked with:

  • DenseNet121, DenseNet169 and ResNet50 with shape (96, 128, 128, 3) and batch size 6
  • DenseNet201 with shape (96, 128, 128, 3) and batch size 5
  • ResNet18 with shape (128, 160, 160, 3) and batch size 6

Related repositories

Unresolved problems

  • There is no DepthwiseConv3D layer in keras, so repo used custom layer from this repo by @alexandrosstergiou which can be slower than native implementation.
  • There is no imagenet weights for 'inceptionresnetv2' and 'inceptionv3'.

Description

This code was used to get 1st place in DrivenData: Advance Alzheimer’s Research with Stall Catchers competition.

More details on ArXiv: https://arxiv.org/abs/2104.01687

Citation

If you find this code useful, please cite it as:

@InProceedings{RSolovyev_2021_stalled,
  author = {Solovyev, Roman and Kalinin, Alexandr A. and Gabruseva, Tatiana},
  title = {3D Convolutional Neural Networks for Stalled Brain Capillary Detection},
  booktitle = {Arxiv: 2104.01687},
  month = {April},
  year = {2021}
}
Comments
  • Update __init__.py

    Update __init__.py

    Using keras 2.9.0, import keras_applications as ka gives the following error:- ModuleNotFoundError: No module named 'keras_applications'

    Instead using from keras import applications as ka works!

    opened by msmuskan 0
  • Pushing current version to PyPI

    Pushing current version to PyPI

    Hello @ZFTurbo,

    if you have time, please push the current updated status (with ConvNeXt) of this repo to PyPI. :)

    Thanks again for the great work and your time!

    Cheers, Dominik

    opened by muellerdo 0
  • Grad cam issue

    Grad cam issue

    Hello ,

    base_model, preprocess_input = Classifiers.get('seresnext50') model = base_model(input_shape=(512, 512, 20, 1 ), weights=None , include_top = False ) x = Flatten()(model.output) x = Dense(1024, activation= 'sigmoid')(x) x = Dense(2, activation= 'sigmoid')(x)

    Trying to train a model , the accuracy is everything resides upto expectation, but the gradcam are quite off from the region of the focus - how the accuracy is good but the grad cam is off the focus of targeted area .

    Using the layer - 'activation-161' as output ref - https://github.com/fitushar/3D-Grad-CAM/blob/master/3DGrad-CAM.ipynb for the gradcam generation code , the results are always at the border of the image.

    opened by ntirupathirao18 0
  • ImportError: cannot import name 'VersionAwareLayers' from 'keras.layers'

    ImportError: cannot import name 'VersionAwareLayers' from 'keras.layers'

    Thank you for the great work.

    I am experiencing the following error over and over, even though I created a brand new tensorflow environment and installed all the necessary libraries in it. Could you please have a look on it and guide me how do I solve this problem? Thank you.

    ImportError: Unable to import 'VersionAwareLayers' from 'keras.layers' (/home/ubuntu/anaconda3/envs/cm_3d/lib/python3.7/site-packages/keras/layers/init.py)

    opened by nasir3843 2
  • 3D DenseNet

    3D DenseNet

    Hello and sorry to bother you beforehand,

    I am currently conducting my master thesis project and I am trying to implement a 3D DenseNet-121 with knee MRIs as input data. While I was searching on how to implement a 3D version of the DenseNet I came across your repository and tried to change it for my application.

    I have some issues regarding my try and I didn't know where else to ask about it and again I am sorry if I am completely of topic asking them here.

    Firstly, my input shapes are (250,320,18,1) and when I give them as input to the 3D DenseNet I developed with stride_size=1 for my Conv_block and pooling_size=(2,2,2) and strides=(2,2,1) for my AveragePooling3D layer in the transition block, the model is constructed properly with the specific input_size, while when I am trying to load a DenseNet121 from classification_models_3d.tfkeras classifiers I am unable to construct it with input_shape(250,320,18,1), stride_size=1 and kernel_size=2. It gives as an error "Negative dimension size... for node pool4_pool/AvgPool3D". Is there a way to specifically define the strides for AvgPool3D layer in the transition block?

    And secondly, I was thinking to load the 3D weights to my 3D DenseNet 121, is there a folder in your repository where I can find your pre-trained weights on imagenet??

    Again thank you for having this repository publicly available and sorry if I am completely of topic asking such things here.

    I look forward for you answer, Kind regards, Anastasis

    opened by alexopoulosanastasis 4
  • What are the limitations on Inceptionv3 input shape?

    What are the limitations on Inceptionv3 input shape?

    I seem to always get this error when I try to create InceptionV3 model no matter what input_shape. What are the limitations on input shape there?

    InvalidArgumentError: Negative dimension size caused by subtracting 3 from 2 for '{{node conv3d_314/Conv3D}} = 
    Conv3D[T=DT_FLOAT, data_format="NDHWC", dilations=[1, 1, 1, 1, 1], padding="VALID", strides=[1, 2, 2, 2, 1]](Placeholder, 
    conv3d_314/Conv3D/ReadVariableOp)' with input shapes: [?,2,17,17,192], [3,3,3,192,320].
    
    opened by mazatov 0
Releases(v1.0.4)
Codes to pre-train T5 (Text-to-Text Transfer Transformer) models pre-trained on Japanese web texts

t5-japanese Codes to pre-train T5 (Text-to-Text Transfer Transformer) models pre-trained on Japanese web texts. The following is a list of models that

Kimio Kuramitsu 1 Dec 13, 2021
Testing and Estimation of structural breaks in Stata

xtbreak estimating and testing for many known and unknown structural breaks in time series and panel data. For an overview of xtbreak test see xtbreak

Jan Ditzen 13 Jun 19, 2022
Novel and high-performance medical image classification pipelines are heavily utilizing ensemble learning strategies

An Analysis on Ensemble Learning optimized Medical Image Classification with Deep Convolutional Neural Networks Novel and high-performance medical ima

14 Dec 18, 2022
Official implementation of "StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation" (SIGGRAPH 2021)

StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation This repository contains the official PyTorch implementation of the following

Wonjong Jang 270 Dec 30, 2022
Weakly Supervised End-to-End Learning (NeurIPS 2021)

WeaSEL: Weakly Supervised End-to-end Learning This is a PyTorch-Lightning-based framework, based on our End-to-End Weak Supervision paper (NeurIPS 202

Auton Lab, Carnegie Mellon University 131 Jan 06, 2023
PyTorch Code of "Memory In Memory: A Predictive Neural Network for Learning Higher-Order Non-Stationarity from Spatiotemporal Dynamics"

Memory In Memory Networks It is based on the paper Memory In Memory: A Predictive Neural Network for Learning Higher-Order Non-Stationarity from Spati

Yang Li 12 May 30, 2022
Deep Learning pipeline for motor-imagery classification.

BCI-ToolBox 1. Introduction BCI-ToolBox is deep learning pipeline for motor-imagery classification. This repo contains five models: ShallowConvNet, De

DongHee 18 Oct 31, 2022
A general-purpose, flexible, and easy-to-use simulator alongside an OpenAI Gym trading environment for MetaTrader 5 trading platform (Approved by OpenAI Gym)

gym-mtsim: OpenAI Gym - MetaTrader 5 Simulator MtSim is a simulator for the MetaTrader 5 trading platform alongside an OpenAI Gym environment for rein

Mohammad Amin Haghpanah 184 Dec 31, 2022
Volumetric Correspondence Networks for Optical Flow, NeurIPS 2019.

VCN: Volumetric correspondence networks for optical flow [project website] Requirements python 3.6 pytorch 1.1.0-1.3.0 pytorch correlation module (opt

Gengshan Yang 144 Dec 06, 2022
Project dự đoán giá cổ phiếu bằng thuật toán LSTM gồm: code train và code demo

Web predicts stock prices using Long - Short Term Memory algorithm Give me some start please!!! User interface image: Choose: DayBegin, DayEnd, Stock

Vo Thuong Truong Nhon 8 Nov 11, 2022
Patch2Pix: Epipolar-Guided Pixel-Level Correspondences [CVPR2021]

Patch2Pix for Accurate Image Correspondence Estimation This repository contains the Pytorch implementation of our paper accepted at CVPR2021: Patch2Pi

Qunjie Zhou 199 Nov 29, 2022
PyTorch implementation of our ICCV paper DeFRCN: Decoupled Faster R-CNN for Few-Shot Object Detection.

Introduction This repo contains the official PyTorch implementation of our ICCV paper DeFRCN: Decoupled Faster R-CNN for Few-Shot Object Detection. Up

133 Dec 29, 2022
A system for quickly generating training data with weak supervision

Programmatically Build and Manage Training Data Announcement The Snorkel team is now focusing their efforts on Snorkel Flow, an end-to-end AI applicat

Snorkel Team 5.4k Jan 02, 2023
Official implementation of the paper "AAVAE: Augmentation-AugmentedVariational Autoencoders"

AAVAE Official implementation of the paper "AAVAE: Augmentation-AugmentedVariational Autoencoders" Abstract Recent methods for self-supervised learnin

Grid AI Labs 48 Dec 12, 2022
Learning to Map Large-scale Sparse Graphs on Memristive Crossbar

Release of AutoGMap:Learning to Map Large-scale Sparse Graphs on Memristive Crossbar For reproduction of our searched model, the Ubuntu OS is recommen

2 Aug 23, 2022
Simulation of self-focusing of laser beams in condensed media

What is it? Program for scientific research, which allows to simulate the phenomenon of self-focusing of different laser beams (including Gaussian, ri

Evgeny Vasilyev 13 Dec 24, 2022
AI4Good project for detecting waste in the environment

Detect waste AI4Good project for detecting waste in environment. www.detectwaste.ml. Our latest results were published in Waste Management journal in

108 Dec 25, 2022
Aalto-cs-msc-theses - Listing of M.Sc. Theses of the Department of Computer Science at Aalto University

Aalto-CS-MSc-Theses Listing of M.Sc. Theses of the Department of Computer Scienc

Jorma Laaksonen 3 Jan 27, 2022
docTR by Mindee (Document Text Recognition) - a seamless, high-performing & accessible library for OCR-related tasks powered by Deep Learning.

docTR by Mindee (Document Text Recognition) - a seamless, high-performing & accessible library for OCR-related tasks powered by Deep Learning.

Mindee 1.5k Jan 01, 2023
Disentangled Face Attribute Editing via Instance-Aware Latent Space Search, accepted by IJCAI 2021.

Instance-Aware Latent-Space Search This is a PyTorch implementation of the following paper: Disentangled Face Attribute Editing via Instance-Aware Lat

67 Dec 21, 2022