SEAN: Image Synthesis with Semantic Region-Adaptive Normalization (CVPR 2020, Oral)

Overview

SEAN: Image Synthesis with Semantic Region-Adaptive Normalization (CVPR 2020 Oral)

Python 3.7 pytorch 1.2.0 pyqt5 5.13.0

image Figure: Face image editing controlled via style images and segmentation masks with SEAN

We propose semantic region-adaptive normalization (SEAN), a simple but effective building block for Generative Adversarial Networks conditioned on segmentation masks that describe the semantic regions in the desired output image. Using SEAN normalization, we can build a network architecture that can control the style of each semantic region individually, e.g., we can specify one style reference image per region. SEAN is better suited to encode, transfer, and synthesize style than the best previous method in terms of reconstruction quality, variability, and visual quality. We evaluate SEAN on multiple datasets and report better quantitative metrics (e.g. FID, PSNR) than the current state of the art. SEAN also pushes the frontier of interactive image editing. We can interactively edit images by changing segmentation masks or the style for any given region. We can also interpolate styles from two reference images per region.

SEAN: Image Synthesis with Semantic Region-Adaptive Normalization
Peihao Zhu, Rameen Abdal, Yipeng Qin, Peter Wonka
Computer Vision and Pattern Recognition CVPR 2020, Oral

[Paper] [Project Page] [Demo]

Installation

Clone this repo.

git clone https://github.com/ZPdesu/SEAN.git
cd SEAN/

This code requires PyTorch, python 3+ and Pyqt5. Please install dependencies by

pip install -r requirements.txt

This model requires a lot of memory and time to train. To speed up the training, we recommend using 4 V100 GPUs

Dataset Preparation

This code uses CelebA-HQ and CelebAMask-HQ dataset. The prepared dataset can be directly downloaded here. After unzipping, put the entire CelebA-HQ folder in the datasets folder. The complete directory should look like ./datasets/CelebA-HQ/train/ and ./datasets/CelebA-HQ/test/.

Generating Images Using Pretrained Models

Once the dataset is prepared, the reconstruction results be got using pretrained models.

  1. Create ./checkpoints/ in the main folder and download the tar of the pretrained models from the Google Drive Folder. Save the tar in ./checkpoints/, then run

    cd checkpoints
    tar CelebA-HQ_pretrained.tar.gz
    cd ../
    
  2. Generate the reconstruction results using the pretrained model.

    python test.py --name CelebA-HQ_pretrained --load_size 256 --crop_size 256 --dataset_mode custom --label_dir datasets/CelebA-HQ/test/labels --image_dir datasets/CelebA-HQ/test/images --label_nc 19 --no_instance --gpu_ids 0
  3. The reconstruction images are saved at ./results/CelebA-HQ_pretrained/ and the corresponding style codes are stored at ./styles_test/style_codes/.

  4. Pre-calculate the mean style codes for the UI mode. The mean style codes can be found at ./styles_test/mean_style_code/.

    python calculate_mean_style_code.py

Training New Models

To train the new model, you need to specify the option --dataset_mode custom, along with --label_dir [path_to_labels] --image_dir [path_to_images]. You also need to specify options such as --label_nc for the number of label classes in the dataset, and --no_instance to denote the dataset doesn't have instance maps.

python train.py --name [experiment_name] --load_size 256 --crop_size 256 --dataset_mode custom --label_dir datasets/CelebA-HQ/train/labels --image_dir datasets/CelebA-HQ/train/images --label_nc 19 --no_instance --batchSize 32 --gpu_ids 0,1,2,3

If you only have single GPU with small memory, please use --batchSize 2 --gpu_ids 0.

UI Introduction

We provide a convenient UI for the users to do some extension works. To run the UI mode, you need to:

  1. run the step Generating Images Using Pretrained Models to save the style codes of the test images and the mean style codes. Or you can directly download the style codes from here. (Note: if you directly use the downloaded style codes, you have to use the pretrained model.

  2. Put the visualization images of the labels used for generating in ./imgs/colormaps/ and the style images in ./imgs/style_imgs_test/. Some example images are provided in these 2 folders. Note: the visualization image and the style image should be picked from ./datasets/CelebAMask-HQ/test/vis/ and ./datasets/CelebAMask-HQ/test/labels/, because only the style codes of the test images are saved in ./styles_test/style_codes/. If you want to use your own images, please prepare the images, labels and visualization of the labels in ./datasets/CelebAMask-HQ/test/ with the same format, and calculate the corresponding style codes.

  3. Run the UI mode

    python run_UI.py --name CelebA-HQ_pretrained --load_size 256 --crop_size 256 --dataset_mode custom --label_dir datasets/CelebA-HQ/test/labels --image_dir datasets/CelebA-HQ/test/images --label_nc 19 --no_instance --gpu_ids 0
  4. How to use the UI. Please check the detail usage of the UI from our Video.

    image

Other Datasets

Will be released soon.

License

All rights reserved. Licensed under the CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International) The code is released for academic research use only.

Citation

If you use this code for your research, please cite our papers.

@InProceedings{Zhu_2020_CVPR,
author = {Zhu, Peihao and Abdal, Rameen and Qin, Yipeng and Wonka, Peter},
title = {SEAN: Image Synthesis With Semantic Region-Adaptive Normalization},
booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2020}
}

Acknowledgments

We thank Wamiq Reyaz Para for helpful comments. This code borrows heavily from SPADE. We thank Taesung Park for sharing his codes. This work was supported by the KAUST Office of Sponsored Research (OSR) under AwardNo. OSR-CRG2018-3730.

Owner
Peihao Zhu
CS PhD at KAUST
Peihao Zhu
Rank 1st in the public leaderboard of ScanRefer (2021-03-18)

InstanceRefer InstanceRefer: Cooperative Holistic Understanding for Visual Grounding on Point Clouds through Instance Multi-level Contextual Referring

63 Dec 07, 2022
Red Team tool for exfiltrating files from a target's Google Drive that you have access to, via Google's API.

GD-Thief Red Team tool for exfiltrating files from a target's Google Drive that you(the attacker) has access to, via the Google Drive API. This includ

Antonio Piazza 39 Dec 27, 2022
Galactic and gravitational dynamics in Python

Gala is a Python package for Galactic and gravitational dynamics. Documentation The documentation for Gala is hosted on Read the docs. Installation an

Adrian Price-Whelan 101 Dec 22, 2022
Code for the paper "Learning-Augmented Algorithms for Online Steiner Tree"

Learning-Augmented Algorithms for Online Steiner Tree This is the code for the paper "Learning-Augmented Algorithms for Online Steiner Tree". Requirem

0 Dec 09, 2021
The official repository for our paper "The Neural Data Router: Adaptive Control Flow in Transformers Improves Systematic Generalization".

Codebase for learning control flow in transformers The official repository for our paper "The Neural Data Router: Adaptive Control Flow in Transformer

Csordás Róbert 24 Oct 15, 2022
NALSM: Neuron-Astrocyte Liquid State Machine

NALSM: Neuron-Astrocyte Liquid State Machine This package is a Tensorflow implementation of the Neuron-Astrocyte Liquid State Machine (NALSM) that int

Computational Brain Lab 4 Nov 28, 2022
Implementation of DocFormer: End-to-End Transformer for Document Understanding, a multi-modal transformer based architecture for the task of Visual Document Understanding (VDU)

DocFormer - PyTorch Implementation of DocFormer: End-to-End Transformer for Document Understanding, a multi-modal transformer based architecture for t

171 Jan 06, 2023
Mini Software that give reminder to drink water as per your weight.

Water Notification Desktop Python The Mini Software built in Python (tkinter) that will remind you to drink water on specific time span based on your

Om Jogani 5 Dec 16, 2022
A PyTorch Implementation of Gated Graph Sequence Neural Networks (GGNN)

A PyTorch Implementation of GGNN This is a PyTorch implementation of the Gated Graph Sequence Neural Networks (GGNN) as described in the paper Gated G

Ching-Yao Chuang 427 Dec 13, 2022
CM building dataset Timisoara

CM_building_dataset_Timisoara Date created: Febr-2020 The Timi\c{s}oara Building Dataset - TMBuD - is composed of 160 images with the resolution of 76

Orhei Ciprian 5 Sep 07, 2022
OSLO: Open Source framework for Large-scale transformer Optimization

O S L O Open Source framework for Large-scale transformer Optimization What's New: December 21, 2021 Released OSLO 1.0. What is OSLO about? OSLO is a

TUNiB 280 Nov 24, 2022
An implementation for the loss function proposed in Decoupled Contrastive Loss paper.

Decoupled-Contrastive-Learning This repository is an implementation for the loss function proposed in Decoupled Contrastive Loss paper. Requirements P

Ramin Nakhli 71 Dec 04, 2022
[MICCAI'20] AlignShift: Bridging the Gap of Imaging Thickness in 3D Anisotropic Volumes

AlignShift NEW: Code for our new MICCAI'21 paper "Asymmetric 3D Context Fusion for Universal Lesion Detection" will also be pushed to this repository

Medical 3D Vision 42 Jan 06, 2023
Madanalysis5 - A package for event file analysis and recasting of LHC results

Welcome to MadAnalysis 5 Outline What is MadAnalysis 5? Requirements Downloading

MadAnalysis 15 Jan 01, 2023
It's a powerful version of linebot

CTPS-FINAL Linbot-sever.py 主程式 Algorithm.py 推薦演算法,媒合餐廳端資料與顧客端資料 config.ini 儲存 channel-access-token、channel-secret 資料 Preface 生活在成大將近4年,我們每天的午餐時間看著形形色色

1 Oct 17, 2022
Cooperative multi-agent reinforcement learning for high-dimensional nonequilibrium control

Cooperative multi-agent reinforcement learning for high-dimensional nonequilibrium control Official implementation of: Cooperative multi-agent reinfor

0 Nov 16, 2021
Implementation of " SESS: Self-Ensembling Semi-Supervised 3D Object Detection" (CVPR2020 Oral)

SESS: Self-Ensembling Semi-Supervised 3D Object Detection Created by Na Zhao from National University of Singapore Introduction This repository contai

125 Dec 23, 2022
'Solving the sampling problem of the Sycamore quantum supremacy circuits

solve_sycamore This repo contains data, contraction code, and contraction order for the paper ''Solving the sampling problem of the Sycamore quantum s

Feng Pan 29 Nov 28, 2022
Unofficial Tensorflow-Keras implementation of Fastformer based on paper [Fastformer: Additive Attention Can Be All You Need](https://arxiv.org/abs/2108.09084).

Fastformer-Keras Unofficial Tensorflow-Keras implementation of Fastformer based on paper Fastformer: Additive Attention Can Be All You Need. Tensorflo

Yam Peleg 10 Jan 30, 2022
PyTorch reimplementation of minimal-hand (CVPR2020)

Minimal Hand Pytorch Unofficial PyTorch reimplementation of minimal-hand (CVPR2020). you can also find in youtube or bilibili bare hand youtube or bil

Hao Meng 228 Dec 29, 2022