Demo code for ICCV 2021 paper "Sensor-Guided Optical Flow"

Overview

Sensor-Guided Optical Flow

Demo code for "Sensor-Guided Optical Flow", ICCV 2021

This code is provided to replicate results with flow hints obtained from LiDAR data.

At the moment, we do not plan to release training code.

[Project page] - [Paper] - [Supplementary]

Alt text

Reference

If you find this code useful, please cite our work:

@inproceedings{Poggi_ICCV_2021,
  title     = {Sensor-Guided Optical Flow},
  author    = {Poggi, Matteo and
               Aleotti, Filippo and
               Mattoccia, Stefano},
  booktitle = {IEEE/CVF International Conference on Computer Vision (ICCV)},
  year = {2021}
}

Contents

  1. Introduction
  2. Installation
  3. Data
  4. Weights
  5. Usage
  6. Contacts
  7. Acknowledgments

Introduction

This paper proposes a framework to guide an optical flow network with external cues to achieve superior accuracy either on known or unseen domains. Given the availability of sparse yet accurate optical flow hints from an external source, these are injected to modulate the correlation scores computed by a state-of-the-art optical flow network and guide it towards more accurate predictions. Although no real sensor can provide sparse flow hints, we show how these can be obtained by combining depth measurements from active sensors with geometry and hand-crafted optical flow algorithms, leading to accurate enough hints for our purpose. Experimental results with a state-of-the-art flow network on standard benchmarks support the effectiveness of our framework, both in simulated and real conditions.

Installation

Install the project requirements in a new python 3 environment:

virtualenv -p python3 guided_flow_env
source guided_flow_env/bin/activate
pip install -r requirements.txt

Compile the guided_flow module, written in C (required for guided flow modulation):

cd external/guided_flow
bash compile.sh
cd ../..

Data

Download KITTI 2015 optical flow training set and precomputed flow hints. Place them under the data folder as follows:

data
├──training
    ├──image_2
        ├── 000000_10.png
        ├── 000000_11.png
        ├── 000001_10.png
        ├── 000001_11.png
        ...
    ├──flow_occ
        ├── 000000_10.png
        ├── 000000_11.png
        ├── 000001_10.png
        ├── 000001_11.png
        ...
    ├──hints
        ├── 000002_10.png
        ├── 000002_11.png
        ├── 000003_10.png
        ├── 000003_11.png
        ...

Weights

We provide QRAFT models tested in Tab. 4. Download the weights and unzip them under weights as follows:

weights
├──raw
    ├── C.pth
    ├── CT.pth
    ...
├──guided
    ├── C.pth
    ├── CT.pth
    ...    

Usage

You are now ready to run the demo_kitti142.py script:

python demo_kitti142.py --model CTK --guided --out_dir results_CTK_guided/

Use --model to specify the weights you want to load among C, CT, CTS and CTK. By default, raw models are loaded, specify --guided to load guided weights and enable sensor-guided optical flow.

Note: Occasionally, the demo may run out of memory on ~12GB GPUs. The script saves intermediate results are saved in --out_dir. You can run again the script and it will skip all images for which intermediate results have been already saved in --out_dir, loading them from the folder. Remember to select a brand new --out_dir when you start an experiment from scratch.

In the end, the aforementioned command should print:

Validation KITTI: 2.08, 5.97

Numbers in Tab. 4 are obtained by running this code on a Titan Xp GPU, with PyTorch 1.7.0. We observed slight fluctuations in the numbers when running on different hardware (e.g., 3090 GPUs), mostly on raw models.

Contacts

m [dot] poggi [at] unibo [dot] it

Acknowledgments

Thanks to Zachary Teed for sharing RAFT code, used as codebase in our project.

TResNet: High Performance GPU-Dedicated Architecture

TResNet: High Performance GPU-Dedicated Architecture paperV2 | pretrained models Official PyTorch Implementation Tal Ridnik, Hussam Lawen, Asaf Noy, I

426 Dec 28, 2022
A benchmark framework for Tensorflow

TensorFlow benchmarks This repository contains various TensorFlow benchmarks. Currently, it consists of two projects: PerfZero: A benchmark framework

1.1k Dec 30, 2022
tf2onnx - Convert TensorFlow, Keras and Tflite models to ONNX.

tf2onnx converts TensorFlow (tf-1.x or tf-2.x), tf.keras and tflite models to ONNX via command line or python api.

Open Neural Network Exchange 1.8k Jan 08, 2023
Rethinking Space-Time Networks with Improved Memory Coverage for Efficient Video Object Segmentation

STCN Rethinking Space-Time Networks with Improved Memory Coverage for Efficient Video Object Segmentation Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [a

Rex Cheng 456 Dec 12, 2022
CLIP (Contrastive Language–Image Pre-training) for Italian

Italian CLIP CLIP (Radford et al., 2021) is a multimodal model that can learn to represent images and text jointly in the same space. In this project,

Italian CLIP 114 Dec 29, 2022
Code for "My(o) Armband Leaks Passwords: An EMG and IMU Based Keylogging Side-Channel Attack" paper

Myo Keylogging This is the source code for our paper My(o) Armband Leaks Passwords: An EMG and IMU Based Keylogging Side-Channel Attack by Matthias Ga

Secure Mobile Networking Lab 7 Jan 03, 2023
Simple and Robust Loss Design for Multi-Label Learning with Missing Labels

Simple and Robust Loss Design for Multi-Label Learning with Missing Labels Official PyTorch Implementation of the paper Simple and Robust Loss Design

Xinyu Huang 28 Oct 27, 2022
A PyTorch implementation of "Semi-Supervised Graph Classification: A Hierarchical Graph Perspective" (WWW 2019)

SEAL ⠀⠀⠀ A PyTorch implementation of Semi-Supervised Graph Classification: A Hierarchical Graph Perspective (WWW 2019) Abstract Node classification an

Benedek Rozemberczki 202 Dec 27, 2022
✨✨✨An awesome open source toolbox for stereo matching.

OpenStereo This is an awesome open source toolbox for stereo matching. Supported Methods: BM SGM(T-PAMI'07) GCNet(ICCV'17) PSMNet(CVPR'18) StereoNet(E

Wang Qingyu 6 Nov 04, 2022
PyTorch implementation of Trust Region Policy Optimization

PyTorch implementation of TRPO Try my implementation of PPO (aka newer better variant of TRPO), unless you need to you TRPO for some specific reasons.

Ilya Kostrikov 366 Nov 15, 2022
An Extendible (General) Continual Learning Framework based on Pytorch - official codebase of Dark Experience for General Continual Learning

Mammoth - An Extendible (General) Continual Learning Framework for Pytorch NEWS STAY TUNED: We are working on an update of this repository to include

AImageLab 277 Dec 28, 2022
This repository provides an efficient PyTorch-based library for training deep models.

s3sec Test AWS S3 buckets for read/write/delete access This tool was developed to quickly test a list of s3 buckets for public read, write and delete

Bytedance Inc. 123 Jan 05, 2023
DexterRedTool - Dexter's Red Team Tool that creates cronjob/task scheduler to consistently creates users

DexterRedTool Author: Dexter Delandro CSEC 473 - Spring 2022 This tool persisten

2 Feb 16, 2022
Source code of NeurIPS 2021 Paper ''Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration''

CaGCN This repo is for source code of NeurIPS 2021 paper "Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration". Paper L

6 Dec 19, 2022
Using deep learning to predict gene structures of the coding genes in DNA sequences of Arabidopsis thaliana

DeepGeneAnnotator: A tool to annotate the gene in the genome The master thesis of the "Using deep learning to predict gene structures of the coding ge

Ching-Tien Wang 3 Sep 09, 2022
A series of Jupyter notebooks with Chinese comment that walk you through the fundamentals of Machine Learning and Deep Learning in python using Scikit-Learn and TensorFlow.

Hands-on-Machine-Learning 目的 这份笔记旨在帮助中文学习者以一种较快较系统的方式入门机器学习, 是在学习Hands-on Machine Learning with Scikit-Learn and TensorFlow这本书的 时候做的个人笔记: 此项目的可取之处 原书的

Baymax 1.5k Dec 21, 2022
Pytorch implementation of our method for regularizing nerual radiance fields for few-shot neural volume rendering.

InfoNeRF: Ray Entropy Minimization for Few-Shot Neural Volume Rendering Pytorch implementation of our method for regularizing nerual radiance fields f

106 Jan 06, 2023
Official code for paper "Optimization for Oriented Object Detection via Representation Invariance Loss".

Optimization for Oriented Object Detection via Representation Invariance Loss By Qi Ming, Zhiqiang Zhou, Lingjuan Miao, Xue Yang, and Yunpeng Dong. Th

ming71 56 Nov 28, 2022
Reproducing code of hair style replacement method from Barbershorp.

Barbershorp Reproducing code of hair style replacement method from Barbershorp. Also reproduces II2S, an improved version of Image2StyleGAN. Requireme

1 Dec 24, 2021
This project aims to be a handler for input creation and running of multiple RICEWQ simulations.

What is autoRICEWQ? This project aims to be a handler for input creation and running of multiple RICEWQ simulations. What is RICEWQ? From the descript

Yass Fuentes 1 Feb 01, 2022