PyContinual (An Easy and Extendible Framework for Continual Learning)

Overview

PyContinual (An Easy and Extendible Framework for Continual Learning)

Easy to Use

You can sumply change the baseline, backbone and task, and then ready to go. Here is an example:

	python run.py \  
	--bert_model 'bert-base-uncased' \  
	--backbone bert_adapter \ #or other backbones (bert, w2v...)  
	--baseline ctr \  #or other avilable baselines (classic, ewc...)
	--task asc \  #or other avilable task/dataset (dsc, newsgroup...)
	--eval_batch_size 128 \  
	--train_batch_size 32 \  
	--scenario til_classification \  #or other avilable scenario (dil_classification...)
	--idrandom 0  \ #which random sequence to use
	--use_predefine_args #use pre-defined arguments

Easy to Extend

You only need to write your own ./dataloader, ./networks and ./approaches. You are ready to go!

Introduction

Recently, continual learning approaches have drawn more and more attention. This repo contains pytorch implementation of a set of (improved) SoTA methods using the same training and evaluation pipeline.

This repository contains the code for the following papers:

Features

  • Datasets: It currently supports Language Datasets (Document/Sentence/Aspect Sentiment Classification, Natural Language Inference, Topic Classification) and Image Datasets (CelebA, CIFAR10, CIFAR100, FashionMNIST, F-EMNIST, MNIST, VLCS)
  • Scenarios: It currently supports Task Incremental Learning and Domain Incremental Learning
  • Training Modes: It currently supports single-GPU. You can also change it to multi-node distributed training and the mixed precision training.

Architecture

./res: all results saved in this folder.
./dat: processed data
./data: raw data ./dataloader: contained dataloader for different data ./approaches: code for training
./networks: code for network architecture
./data_seq: some reference sequences (e.g. asc_random) ./tools: code for preparing the data

Setup

  • If you want to run the existing systems, please see run_exist.md
  • If you want to expand the framework with your own model, please see run_own.md
  • If you want to see the full list of baselines and variants, please see baselines.md

Reference

If using this code, parts of it, or developments from it, please consider cite the references bellow.

@inproceedings{ke2021achieve,
  title={Achieving Forgetting Prevention and Knowledge Transfer in Continual Learning},
  author={Ke, Zixuan and Liu, Bing and Ma, Nianzu and Xu, Hu, and Lei Shu},
  booktitle={NeurIPS},
  year={2021}
}

@inproceedings{ke2021contrast,
  title={CLASSIC: Continual and Contrastive Learning of Aspect Sentiment Classification Tasks},
  author={Ke, Zixuan and Liu, Bing and Xu, Hu, and Lei Shu},
  booktitle={EMNLP},
  year={2021}
}

@inproceedings{ke2021adapting,
  title={Adapting BERT for Continual Learning of a Sequence of Aspect Sentiment Classification Tasks},
  author={Ke, Zixuan and Xu, Hu and Liu, Bing},
  booktitle={Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies},
  pages={4746--4755},
  year={2021}
}

@inproceedings{ke2020continualmixed,
author= {Ke, Zixuan and Liu, Bing and Huang, Xingchang},
title= {Continual Learning of a Mixed Sequence of Similar and Dissimilar Tasks},
booktitle = {Advances in Neural Information Processing Systems},
volume={33},
year = {2020}}

@inproceedings{ke2020continual,
author= {Zixuan Ke and Bing Liu and Hao Wang and Lei Shu},
title= {Continual Learning with Knowledge Transfer for Sentiment Classification},
booktitle = {ECML-PKDD},
year = {2020}}

Contact

Please drop an email to Zixuan Ke, Xingchang Huang or Nianzu Ma if you have any questions regarding to the code. We thank Bing Liu, Hu Xu and Lei Shu for their valuable comments and opinioins.

Owner
Zixuan Ke
Zixuan Ke
SNIPS: Solving Noisy Inverse Problems Stochastically

SNIPS: Solving Noisy Inverse Problems Stochastically This repo contains the official implementation for the paper SNIPS: Solving Noisy Inverse Problem

Bahjat Kawar 35 Nov 09, 2022
This is a collection of all challenges in HKCERT CTF 2021

香港網絡保安新生代奪旗挑戰賽 2021 (HKCERT CTF 2021) This is a collection of all challenges (and writeups) in HKCERT CTF 2021 Challenges ID Chinese name Name Score S

10 Jan 27, 2022
3 Apr 20, 2022
Human-Pose-and-Motion History

Human Pose and Motion Scientist Approach Eadweard Muybridge, The Galloping Horse Portfolio, 1887 Etienne-Jules Marey, Descent of Inclined Plane, Chron

Daito Manabe 47 Dec 16, 2022
Code for the paper: Sketch Your Own GAN

Sketch Your Own GAN Project | Paper | Youtube | Slides Our method takes in one or a few hand-drawn sketches and customizes an off-the-shelf GAN to mat

677 Dec 28, 2022
PyTorch implementation of our ICCV 2019 paper: Liquid Warping GAN: A Unified Framework for Human Motion Imitation, Appearance Transfer and Novel View Synthesis

Impersonator PyTorch implementation of our ICCV 2019 paper: Liquid Warping GAN: A Unified Framework for Human Motion Imitation, Appearance Transfer an

SVIP Lab 1.7k Jan 06, 2023
Fake videos detection by tracing the source using video hashing retrieval.

Vision Transformer Based Video Hashing Retrieval for Tracing the Source of Fake Videos 🎉️ 📜 Directory Introduction VTL Trace Samples and Acc of Hash

56 Dec 22, 2022
Oscar and VinVL

Oscar: Object-Semantics Aligned Pre-training for Vision-and-Language Tasks VinVL: Revisiting Visual Representations in Vision-Language Models Updates

Microsoft 938 Dec 26, 2022
DRIFT is a tool for Diachronic Analysis of Scientific Literature.

About DRIFT is a tool for Diachronic Analysis of Scientific Literature. The application offers user-friendly and customizable utilities for two modes:

Rajaswa Patil 108 Dec 12, 2022
Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT

CheXbert: Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT CheXbert is an accurate, automated dee

Stanford Machine Learning Group 51 Dec 08, 2022
ArcaneGAN by Alex Spirin

ArcaneGAN by Alex Spirin

Alex 617 Dec 28, 2022
NeurIPS workshop paper 'Counter-Strike Deathmatch with Large-Scale Behavioural Cloning'

Counter-Strike Deathmatch with Large-Scale Behavioural Cloning Tim Pearce, Jun Zhu Offline RL workshop, NeurIPS 2021 Paper: https://arxiv.org/abs/2104

Tim Pearce 169 Dec 26, 2022
Machine Translation Implement By Bi-GRU And Transformer

Seq2Seq Translation Implement By Bidirectional GRU And Transformer In Pytorch Before You Run The Code You should download the data through the link be

He Wang 2 Oct 27, 2021
A Python package for generating concise, high-quality summaries of a probability distribution

GoodPoints A Python package for generating concise, high-quality summaries of a probability distribution GoodPoints is a collection of tools for compr

Microsoft 28 Oct 10, 2022
This is the official code for the paper "Learning with Nested Scene Modeling and Cooperative Architecture Search for Low-Light Vision"

RUAS This is the official code for the paper "Learning with Nested Scene Modeling and Cooperative Architecture Search for Low-Light Vision" A prelimin

Vision & Optimization Group (VOG) 2 May 05, 2022
FAMIE is a comprehensive and efficient active learning (AL) toolkit for multilingual information extraction (IE)

FAMIE: A Fast Active Learning Framework for Multilingual Information Extraction

18 Sep 01, 2022
Learning High-Speed Flight in the Wild

Learning High-Speed Flight in the Wild This repo contains the code associated to the paper Learning Agile Flight in the Wild. For more information, pl

Robotics and Perception Group 391 Dec 29, 2022
This tool converts a Nondeterministic Finite Automata (NFA) into a Deterministic Finite Automata (DFA)

This tool converts a Nondeterministic Finite Automata (NFA) into a Deterministic Finite Automata (DFA)

Quinn Herden 1 Feb 04, 2022
This is a tensorflow-based rotation detection benchmark, also called AlphaRotate.

AlphaRotate: A Rotation Detection Benchmark using TensorFlow Abstract AlphaRotate is maintained by Xue Yang with Shanghai Jiao Tong University supervi

yangxue 972 Jan 05, 2023
SuMa++: Efficient LiDAR-based Semantic SLAM (Chen et al IROS 2019)

SuMa++: Efficient LiDAR-based Semantic SLAM This repository contains the implementation of SuMa++, which generates semantic maps only using three-dime

Photogrammetry & Robotics Bonn 701 Dec 30, 2022