Code for Active Learning at The ImageNet Scale.

Overview

Active Learning at the ImageNet Scale

This repo contains code for the paper Active Learning at the ImageNet Scale by Zeyad Emam*, Hong-Min Chu*, Ping-Yeh Chiang*, Wojtek Czaja, Richard Leapman, Micah Goldblum, and Tom Goldstein.

Requirements

pip install -r requirements.txt

Comet and Logging

This project uses Comet ML to log all experiments, you must install comet_ml (included in requirements.txt), however, the code does not require the user to have a Comet ML account or to enable comet logging at all. If you choose to use comet ML, then you should include your API key in your home directory ~/.comet.config (more on this in the Comet ML documentation). To use comet make sure the use the flag --enable_comet.

Logs and network weights are stored according to the command line arguments --log_dir and --ckpt_path.

Loading SSP checkpoints

Self-supervised pretrained checkpoints must be obtained separately and specified in ./src/arg_pools for each argpool, under the key "init_pretrained_ckpt_path". To access the checkpoints used in our experiments, please use the following links:

Sample Commands to Reproduce the Results in the Paper

Each Imagenet experiment was conducted on a cluster node with a single V100-SXM2 GPU (32GB VRAM), 64gb of RAM, and 16 2.3 GHz Intel Gold 6140 cpus. If more than one gpu are available on the node, the code will automatically distribute batches across all gpus using DistributedDataParallel training.

Below is a sample command for running an experiment. The full list of command line arguments can be found in src/utils/parser.py.

python main_al.py --dataset_dir 
   
     --exp_name RandomSampler_arg_ssp_linear_evaluation_imagenet_b10000 --dataset imagenet --arg_pool ssp_linear_evaluation --model SSLResNet50 --strategy RandomSampler --rounds 8 --round_budget 10000 --init_pool_size 30000 --subset_labeled 50000 --subset_unlabeled 80000 --freeze_feature --partitions 10 --init_pool_type random 

   

The full list of commands to reproduce all plots in the paper can be obtained by running python src/gen_jobs.py.

Owner
Zeyad Emam
PhD student in Applied Mathematics at the University of Maryland - College Park and Pre-doctoral IRTA fellow at NIH.
Zeyad Emam
DiSECt: Differentiable Simulator for Robotic Cutting

DiSECt: Differentiable Simulator for Robotic Cutting Website | Paper | Dataset | Video | Blog post DiSECt is a simulator for the cutting of deformable

NVIDIA Research Projects 73 Oct 29, 2022
Repo for 2021 SDD assessment task 2, by Felix, Anna, and James.

SoftwareTask2 Repo for 2021 SDD assessment task 2, by Felix, Anna, and James. File/folder structure: helloworld.py - demonstrates various map backgrou

3 Dec 13, 2022
An LSTM for time-series classification

Update 10-April-2017 And now it works with Python3 and Tensorflow 1.1.0 Update 02-Jan-2017 I updated this repo. Now it works with Tensorflow 0.12. In

Rob Romijnders 391 Dec 27, 2022
Functional TensorFlow Implementation of Singular Value Decomposition for paper Fast Graph Learning

tf-fsvd TensorFlow Implementation of Functional Singular Value Decomposition for paper Fast Graph Learning with Unique Optimal Solutions Cite If you f

Sami Abu-El-Haija 14 Nov 25, 2021
Yolo ros - YOLO-ROS for HUAWEI ATLAS200

YOLO-ROS YOLO-ROS for NVIDIA YOLO-ROS for HUAWEI ATLAS200, please checkout for b

ChrisLiu 5 Oct 18, 2022
Pytorch implementation of ICASSP 2022 paper Attention Probe: Vision Transformer Distillation in the Wild

Attention Probe: Vision Transformer Distillation in the Wild Jiahao Wang, Mingdeng Cao, Shuwei Shi, Baoyuan Wu, Yujiu Yang In ICASSP 2022 This code is

IIGROUP 6 Sep 21, 2022
Hepsiburada - Hepsiburada Urun Bilgisi Cekme

Hepsiburada Urun Bilgisi Cekme from hepsiburada import Marka nike = Marka("nike"

Ilker Manap 8 Oct 26, 2022
[TNNLS 2021] The official code for the paper "Learning Deep Context-Sensitive Decomposition for Low-Light Image Enhancement"

CSDNet-CSDGAN this is the code for the paper "Learning Deep Context-Sensitive Decomposition for Low-Light Image Enhancement" Environment Preparing pyt

Jiaao Zhang 17 Nov 05, 2022
High-quality implementations of standard and SOTA methods on a variety of tasks.

Uncertainty Baselines The goal of Uncertainty Baselines is to provide a template for researchers to build on. The baselines can be a starting point fo

Google 1.1k Dec 30, 2022
A PyTorch-based library for fast prototyping and sharing of deep neural network models.

A PyTorch-based library for fast prototyping and sharing of deep neural network models.

78 Jan 03, 2023
Code for "Diffusion is All You Need for Learning on Surfaces"

Source code for "Diffusion is All You Need for Learning on Surfaces", by Nicholas Sharp Souhaib Attaiki Keenan Crane Maks Ovsjanikov NOTE: the linked

Nick Sharp 247 Dec 28, 2022
OpenDILab Multi-Agent Environment

Go-Bigger: Multi-Agent Decision Intelligence Environment GoBigger Doc (中文版) Ongoing 2021.11.13 We are holding a competition —— Go-Bigger: Multi-Agent

OpenDILab 441 Jan 05, 2023
modelvshuman is a Python library to benchmark the gap between human and machine vision

modelvshuman is a Python library to benchmark the gap between human and machine vision. Using this library, both PyTorch and TensorFlow models can be evaluated on 17 out-of-distribution datasets with

Bethge Lab 244 Jan 03, 2023
This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures

Introduction This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures. @inproceedings{Wa

Jiaqi Wang 42 Jan 07, 2023
BMVC 2021: This is the github repository for "Few Shot Temporal Action Localization using Query Adaptive Transformers" accepted in British Machine Vision Conference (BMVC) 2021, Virtual

FS-QAT: Few Shot Temporal Action Localization using Query Adaptive Transformer Accepted as Poster in BMVC 2021 This is an official implementation in P

Sauradip Nag 14 Dec 09, 2022
An elaborate and exhaustive paper list for Named Entity Recognition (NER)

Named-Entity-Recognition-NER-Papers by Pengfei Liu, Jinlan Fu and other contributors. An elaborate and exhaustive paper list for Named Entity Recognit

Pengfei Liu 388 Dec 18, 2022
An open-source online reverse dictionary.

An open-source online reverse dictionary.

THUNLP 6.3k Jan 09, 2023
Really awesome semantic segmentation

really-awesome-semantic-segmentation A list of all papers on Semantic Segmentation and the datasets they use. This site is maintained by Holger Caesar

Holger Caesar 400 Nov 28, 2022
[Arxiv preprint] Causality-inspired Single-source Domain Generalization for Medical Image Segmentation (code&data-processing pipeline)

Causality-inspired Single-source Domain Generalization for Medical Image Segmentation Arxiv preprint Repository under construction. Might still be bug

Cheng 31 Dec 27, 2022
HODEmu, is both an executable and a python library that is based on Ragagnin 2021 in prep.

HODEmu HODEmu, is both an executable and a python library that is based on Ragagnin 2021 in prep. and emulates satellite abundance as a function of co

Antonio Ragagnin 1 Oct 13, 2021