A python package for generating, analyzing and visualizing building shadows

Overview

pybdshadow

1649074615552.png

Documentation Status Downloads codecov Tests Binder

Introduction

pybdshadow is a python package for generating, analyzing and visualizing building shadows from large scale building geographic data. pybdshadow support generate building shadows from both sun light and point light. pybdshadow provides an efficient and easy-to-use method to generate a new source of geospatial data with great application potential in urban study.

The latest stable release of the software can be installed via pip and full documentation can be found here.

Functionality

Currently, pybdshadow mainly provides the following methods:

  • Generating building shadow from sun light: With given location and time, the function in pybdshadow uses the properties of sun position obtained from suncalc-py and the building height to generate shadow geometry data.
  • Generating building shadow from point light: pybdshadow can generate the building shadow with given location and height of the point light, which can be potentially useful for visual area analysis in urban environment.
  • Analysis: pybdshadow integrated the analysing method based on the properties of sun movement to track the changing position of shadows within a fixed time interval. Based on the grid processing framework provided by TransBigData, pybdshadow is capable of calculating sunshine time on the ground and on the roof.
  • Visualization: Built-in visualization capabilities leverage the visualization package keplergl to interactively visualize building and shadow data in Jupyter notebooks with simple code.

The target audience of pybdshadow includes data science researchers and data engineers in the field of BIM, GIS, energy, environment, and urban computing.

Installation

It is recommended to use Python 3.7, 3.8, 3.9

Using pypi PyPI version

pybdshadow can be installed by using pip install. Before installing pybdshadow, make sure that you have installed the available geopandas package. If you already have geopandas installed, run the following code directly from the command prompt to install pybdshadow:

pip install pybdshadow

Usage

Shadow generated by Sun light

Detail usage can be found in this example. pybdshadow is capable of generating shadows from building geographic data. The buildings are usually store in the data as the form of Polygon object with height information (usually Shapefile or GeoJSON file).

import pandas as pd
import geopandas as gpd
#Read building GeoJSON data
buildings = gpd.read_file(r'data/bd_demo_2.json')

Given a building GeoDataFrame and UTC datetime, pybdshadow can calculate the building shadow based on the sun position obtained by suncalc-py.

import pybdshadow
#Given UTC datetime
date = pd.to_datetime('2022-01-01 12:45:33.959797119')\
    .tz_localize('Asia/Shanghai')\
    .tz_convert('UTC')
#Calculate building shadow for sun light
shadows = pybdshadow.bdshadow_sunlight(buildings,date)

Visualize buildings and shadows using matplotlib.

import matplotlib.pyplot as plt
fig = plt.figure(1, (12, 12))
ax = plt.subplot(111)
# plot buildings
buildings.plot(ax=ax)
# plot shadows
shadows['type'] += ' shadow'
shadows.plot(ax=ax, alpha=0.7,
             column='type',
             categorical=True,
             cmap='Set1_r',
             legend=True)
plt.show()

1651741110878.png

pybdshadow also provide visualization method supported by keplergl.

# visualize buildings and shadows
pybdshadow.show_bdshadow(buildings = buildings,shadows = shadows)

1649161376291.png

Shadow generated by Point light

pybdshadow can also calculate the building shadow generated by point light. Given coordinates and height of the point light:

#Calculate building shadow for point light
shadows = pybdshadow.bdshadow_pointlight(buildings,139.713319,35.552040,200)
#Visualize buildings and shadows
pybdshadow.show_bdshadow(buildings = buildings,shadows = shadows)

1649405838683.png

Shadow coverage analysis

pybdshadow provides the functionality to analysis sunshine time on the roof and on the ground.

Result of shadow coverage on the roof:

1651645524782.png1651975815798.png

Result of sunshine time on the ground:

1651645530892.png1651975824187.png

Dependency

pybdshadow depends on the following packages

Citation information status

Citation information can be found at CITATION.cff.

Contributing to pybdshadow GitHub contributors GitHub commit activity

All contributions, bug reports, bug fixes, documentation improvements, enhancements and ideas are welcome. A detailed overview on how to contribute can be found in the contributing guide on GitHub.

You might also like...
Code and data for the EMNLP 2021 paper "Just Say No: Analyzing the Stance of Neural Dialogue Generation in Offensive Contexts". Coming soon!

ToxiChat Code and data for the EMNLP 2021 paper "Just Say No: Analyzing the Stance of Neural Dialogue Generation in Offensive Contexts". Install depen

Universal Adversarial Triggers for Attacking and Analyzing NLP (EMNLP 2019)

Universal Adversarial Triggers for Attacking and Analyzing NLP This is the official code for the EMNLP 2019 paper, Universal Adversarial Triggers for

Code for the paper
Code for the paper "Benchmarking and Analyzing Point Cloud Classification under Corruptions"

ModelNet-C Code for the paper "Benchmarking and Analyzing Point Cloud Classification under Corruptions". For the latest updates, see: sites.google.com

A framework for analyzing computer vision models with simulated data

3DB: A framework for analyzing computer vision models with simulated data Paper Quickstart guide Blog post Installation Follow instructions on: https:

Analyzing basic network responses to novel classes
Analyzing basic network responses to novel classes

novelty-detection Analyzing how AlexNet responds to novel classes with varying degrees of similarity to pretrained classes from ImageNet. If you find

Project page of the paper 'Analyzing Perception-Distortion Tradeoff using Enhanced Perceptual Super-resolution Network' (ECCVW 2018)
Project page of the paper 'Analyzing Perception-Distortion Tradeoff using Enhanced Perceptual Super-resolution Network' (ECCVW 2018)

EPSR (Enhanced Perceptual Super-resolution Network) paper This repo provides the test code, pretrained models, and results on benchmark datasets of ou

😇A pyTorch implementation of the DeepMoji model: state-of-the-art deep learning model for analyzing sentiment, emotion, sarcasm etc

------ Update September 2018 ------ It's been a year since TorchMoji and DeepMoji were released. We're trying to understand how it's being used such t

Cross Quality LFW: A database for Analyzing Cross-Resolution Image Face Recognition in Unconstrained Environments

Cross-Quality Labeled Faces in the Wild (XQLFW) Here, we release the database, evaluation protocol and code for the following paper: Cross Quality LFW

Official repository of the paper
Official repository of the paper "A Variational Approximation for Analyzing the Dynamics of Panel Data". Mixed Effect Neural ODE. UAI 2021.

Official repository of the paper (UAI 2021) "A Variational Approximation for Analyzing the Dynamics of Panel Data", Mixed Effect Neural ODE. Panel dat

Comments
  • Could you explain more on the data preparation pipeline?(How to get geojson file from OSM?) much appreciated!

    Could you explain more on the data preparation pipeline?(How to get geojson file from OSM?) much appreciated!

    Is your feature request related to a problem? Please describe. A clear and concise description of what the problem is. Ex. I'm always frustrated when [...]

    Describe the solution you'd like A clear and concise description of what you want to happen.

    Describe alternatives you've considered A clear and concise description of any alternative solutions or features you've considered.

    Additional context Add any other context or screenshots about the feature request here.

    opened by WanliQianKolmostar 4
  • Shadows also before sunrise and after sunset

    Shadows also before sunrise and after sunset

    Hi, thanks for this wonderful package, I'm really enjoying it!

    I've noticed that with pybdshadow.bdshadow_sunlight shadow results are also provided before sunrise and after sunset for the local time, it seems to me there should be an error thrown in this case, since the results are not meaningful (or simply a zero area shadow provided).

    I imagine this type of check is already implemented for the calculations of light/shadow daily hours on a surface.

    opened by gcaria 2
  • [ImgBot] Optimize images

    [ImgBot] Optimize images

    Beep boop. Your images are optimized!

    Your image file size has been reduced by 20% 🎉

    Details

    | File | Before | After | Percent reduction | |:--|:--|:--|:--| | /image/README/1649161376291_1.png | 373.42kb | 249.67kb | 33.14% | | /docs/source/_static/visualize.png | 142.65kb | 95.60kb | 32.98% | | /image/README/1649074615552.png | 25.86kb | 18.00kb | 30.41% | | /docs/source/_static/logo-wordmark-dark.png | 25.86kb | 18.00kb | 30.41% | | /docs/source/_static/logo-wordmark-light.png | 22.20kb | 16.06kb | 27.67% | | /image/README/1649405838683_1.png | 395.68kb | 297.10kb | 24.91% | | /docs/source/example/output_6_1.png | 283.05kb | 230.73kb | 18.48% | | /docs/source/example/output_31_0.png | 56.82kb | 46.96kb | 17.35% | | /image/README/1651975824187.png | 57.54kb | 47.80kb | 16.93% | | /docs/source/example/output_29_0.png | 57.54kb | 47.80kb | 16.93% | | /docs/source/example/output_14_0.png | 413.83kb | 349.48kb | 15.55% | | /image/README/1651741110878.png | 414.83kb | 350.63kb | 15.47% | | /docs/source/example/output_24_1.png | 16.54kb | 14.38kb | 13.09% | | /image/README/1651975815798.png | 37.59kb | 34.22kb | 8.98% | | /docs/source/example/output_27_0.png | 37.59kb | 34.22kb | 8.98% | | /image/README/1651645530892.png | 47.96kb | 46.13kb | 3.81% | | /image/README/1651506285290.png | 44.85kb | 43.24kb | 3.59% | | /image/README/1651645524782.png | 39.38kb | 38.19kb | 3.01% | | /image/README/1651490416315.png | 42.67kb | 41.57kb | 2.58% | | /image/README/1651490411329.png | 39.70kb | 38.88kb | 2.06% | | | | | | | Total : | 2,575.54kb | 2,058.63kb | 20.07% |


    📝 docs | :octocat: repo | 🙋🏾 issues | 🏪 marketplace

    ~Imgbot - Part of Optimole family

    opened by imgbot[bot] 1
  • Shadow on vertical walls

    Shadow on vertical walls

    Hi, As far as I understood from the documentation, pybdshadow is currently able to calculate shadows on the ground and on the roofs of buildings. I was just wondering, is it possible to calculate shadows also on vertical walls of buildings? For my use case, I would not need a complete shadow calculation, I would just need to know if a specific wall surface is shadowed or not (a binary output). To simplify, it would be enough to know if a single point of the wall surface (e.g. the center) is shadowed.

    opened by amaccarini 1
Releases(0.3.3)
Owner
Qing Yu
Python, JavaScript, Spatio-temporal big data, Data visualization
Qing Yu
MLSpace: Hassle-free machine learning & deep learning development

MLSpace: Hassle-free machine learning & deep learning development

abhishek thakur 293 Jan 03, 2023
Readings for "A Unified View of Relational Deep Learning for Polypharmacy Side Effect, Combination Therapy, and Drug-Drug Interaction Prediction."

Polypharmacy - DDI - Synergy Survey The Survey Paper This repository accompanies our survey paper A Unified View of Relational Deep Learning for Polyp

AstraZeneca 79 Jan 05, 2023
D2Go is a toolkit for efficient deep learning

D2Go D2Go is a production ready software system from FacebookResearch, which supports end-to-end model training and deployment for mobile platforms. W

Facebook Research 744 Jan 04, 2023
Pytorch implementation of DeePSiM

Pytorch implementation of DeePSiM

1 Nov 05, 2021
JUSTICE: A Benchmark Dataset for Supreme Court’s Judgment Prediction

JUSTICE: A Benchmark Dataset for Supreme Court’s Judgment Prediction CSCI 544 Final Project done by: Mohammed Alsayed, Shaayan Syed, Mohammad Alali, S

Smit Patel 3 Dec 28, 2022
To model the probability of a soccer coach leave his/her team during Campeonato Brasileiro for 10 chosen teams and considering years 2018, 2019 and 2020.

To model the probability of a soccer coach leave his/her team during Campeonato Brasileiro for 10 chosen teams and considering years 2018, 2019 and 2020.

Larissa Sayuri Futino Castro dos Santos 1 Jan 20, 2022
Official code for "Simpler is Better: Few-shot Semantic Segmentation with Classifier Weight Transformer. ICCV2021".

Simpler is Better: Few-shot Semantic Segmentation with Classifier Weight Transformer. ICCV2021. Introduction We proposed a novel model training paradi

Lucas 103 Dec 14, 2022
Deep Reinforcement Learning based autonomous navigation for quadcopters using PPO algorithm.

PPO-based Autonomous Navigation for Quadcopters This repository contains an implementation of Proximal Policy Optimization (PPO) for autonomous naviga

Bilal Kabas 16 Nov 11, 2022
In this project, we create and implement a deep learning library from scratch.

ARA In this project, we create and implement a deep learning library from scratch. Table of Contents Deep Leaning Library Table of Contents About The

22 Aug 23, 2022
A high-performance anchor-free YOLO. Exceeding yolov3~v5 with ONNX, TensorRT, NCNN, and Openvino supported.

YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and industrial communities. For more details, please refer to our rep

7.7k Jan 06, 2023
E-RAFT: Dense Optical Flow from Event Cameras

E-RAFT: Dense Optical Flow from Event Cameras This is the code for the paper E-RAFT: Dense Optical Flow from Event Cameras by Mathias Gehrig, Mario Mi

Robotics and Perception Group 71 Dec 12, 2022
Learning Dynamic Network Using a Reuse Gate Function in Semi-supervised Video Object Segmentation.

Training Script for Reuse-VOS This code implementation of CVPR 2021 paper : Learning Dynamic Network Using a Reuse Gate Function in Semi-supervised Vi

HYOJINPARK 22 Jan 01, 2023
Towards Representation Learning for Atmospheric Dynamics (AtmoDist)

Towards Representation Learning for Atmospheric Dynamics (AtmoDist) The prediction of future climate scenarios under anthropogenic forcing is critical

Sebastian Hoffmann 4 Dec 15, 2022
A small library of 3D related utilities used in my research.

utils3D A small library of 3D related utilities used in my research. Installation Install via GitHub pip install git+https://github.com/Steve-Tod/util

Zhenyu Jiang 8 May 20, 2022
This is the official code of our paper "Diversity-based Trajectory and Goal Selection with Hindsight Experience Relay" (PRICAI 2021)

Diversity-based Trajectory and Goal Selection with Hindsight Experience Replay This is the official implementation of our paper "Diversity-based Traje

Tianhong Dai 6 Jul 18, 2022
Official PyTorch implementation of Less is More: Pay Less Attention in Vision Transformers.

Less is More: Pay Less Attention in Vision Transformers Official PyTorch implementation of Less is More: Pay Less Attention in Vision Transformers. By

73 Jan 01, 2023
A real-time motion capture system that estimates poses and global translations using only 6 inertial measurement units

TransPose Code for our SIGGRAPH 2021 paper "TransPose: Real-time 3D Human Translation and Pose Estimation with Six Inertial Sensors". This repository

Xinyu Yi 261 Dec 31, 2022
Dynamic Divide-and-Conquer Adversarial Training for Robust Semantic Segmentation (ICCV2021)

Dynamic Divide-and-Conquer Adversarial Training for Robust Semantic Segmentation This is a pytorch project for the paper Dynamic Divide-and-Conquer Ad

DV Lab 29 Nov 21, 2022
Focal and Global Knowledge Distillation for Detectors

FGD Paper: Focal and Global Knowledge Distillation for Detectors Install MMDetection and MS COCO2017 Our codes are based on MMDetection. Please follow

Mesopotamia 261 Dec 23, 2022
Code for the paper "Functional Regularization for Reinforcement Learning via Learned Fourier Features"

Reinforcement Learning with Learned Fourier Features State-space Soft Actor-Critic Experiments Move to the state-SAC-LFF repository. cd state-SAC-LFF

Alex Li 10 Nov 11, 2022