Locally Most Powerful Bayesian Test for Out-of-Distribution Detection using Deep Generative Models

Related tags

Deep LearningLMPBT
Overview

LMPBT

Supplementary code for the Paper entitled ``Locally Most Powerful Bayesian Test for Out-of-Distribution Detection using Deep Generative Models"

  1. Specification of dependencies Pytorch 1.7.1 torchvision 0.8.2 Scikit-learn 0.22 PyHessian (See, https://github.com/amirgholami/PyHessian.) pip install torch==1.7.1 torchvision==0.8.2 pip install pyhessian pip install scikit-learn

  2. Dataset MNIST, FASHION-MNIS, CIFAR-10, CIFAR-100, and SVHN : downloaded from torchvision.datasets CelebA : http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

  3. Training code We refer to the following code for model training : VAE : https://github.com/XavierXiao/Likelihood-Regret

To train the VAEs, use appropriate arguments and run this command: python train_vae.py

We refer to the following code for computing the low-rank-approximation of Hessian : https://github.com/amirgholami/PyHessian

To compute the top eigenvalues and eigenvectors of VAE models, run this command: python get_eig_vecs_vae.py

  1. Evaluation code To comput the LMPBT-scores using the VAE models, run this command: python get_lmpbt_score.py

  2. We provided the LMPBT socres of a VAE trained on CIFAR-100 and tested on CIFAR-100 as an in-distribution dataset, SVHN and CelebA as an OOD dataset. To comput the OOD performance metrics (AUROC, AUPR and FPR80) of these experiments, run this command: python get_metrics.py

  3. Pre-trained models We provided the pretrained VAE, trained on CIFAR-100.

The model can be loaded using the following code.

parser.add_argument('--state_E', default='./models/cifar100_netE.pth', help='path to encoder checkpoint')

parser.add_argument('--state_G', default='./models/cifar100_netG.pth', help='path to encoder checkpoint')

netG = DVAE.DCGAN_G(opt.imageSize, nz, nc, ngf, ngpu)

state_G = torch.load(opt.state_G, map_location=device)

netG.load_state_dict(state_G)

netE = DVAE.Encoder(opt.imageSize, nz, nc, ngf, ngpu)

state_E = torch.load(opt.state_E, map_location=device)

netE.load_state_dict(state_E)

190 Jan 03, 2023
Learned Token Pruning for Transformers

LTP: Learned Token Pruning for Transformers Check our paper for more details. Installation We follow the same installation procedure as the original H

Sehoon Kim 52 Dec 29, 2022
Code release for DS-NeRF (Depth-supervised Neural Radiance Fields)

Depth-supervised NeRF: Fewer Views and Faster Training for Free Project | Paper | YouTube Pytorch implementation of our method for learning neural rad

524 Jan 08, 2023
An inofficial PyTorch implementation of PREDATOR based on KPConv.

PREDATOR: Registration of 3D Point Clouds with Low Overlap An inofficial PyTorch implementation of PREDATOR based on KPConv. The code has been tested

ZhuLifa 14 Aug 03, 2022
Implementation of OpenAI paper with Simple Noise Scale on Fastai V2

README Implementation of OpenAI paper "An Empirical Model of Large-Batch Training" for Fastai V2. The code is based on the batch size finder implement

13 Dec 10, 2021
StyleGAN2-ada for practice

This version of the newest PyTorch-based StyleGAN2-ada is intended mostly for fellow artists, who rarely look at scientific metrics, but rather need a working creative tool. Tested on Python 3.7 + Py

vadim epstein 170 Nov 16, 2022
Implementation based on Paper - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

Implementation based on Paper - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

HamasKhan 3 Jul 08, 2022
Semi-supervised Stance Detection of Tweets Via Distant Network Supervision

SANDS This is an annonymous repository containing code and data necessary to reproduce the results published in "Semi-supervised Stance Detection of T

2 Sep 22, 2022
CONditionals for Ordinal Regression and classification in PyTorch

CONDOR pytorch implementation for ordinal regression with deep neural networks. Documentation: https://GarrettJenkinson.github.io/condor_pytorch About

7 Jul 25, 2022
Chinese Mandarin tts text-to-speech 中文 (普通话) 语音 合成 , by fastspeech 2 , implemented in pytorch, using waveglow as vocoder,

Chinese mandarin text to speech based on Fastspeech2 and Unet This is a modification and adpation of fastspeech2 to mandrin(普通话). Many modifications t

291 Jan 02, 2023
DrWhy is the collection of tools for eXplainable AI (XAI). It's based on shared principles and simple grammar for exploration, explanation and visualisation of predictive models.

Responsible Machine Learning With Great Power Comes Great Responsibility. Voltaire (well, maybe) How to develop machine learning models in a responsib

Model Oriented 590 Dec 26, 2022
Collect super-resolution related papers, data, repositories

Collect super-resolution related papers, data, repositories

WangChaofeng 1.7k Jan 03, 2023
Towards Multi-Camera 3D Human Pose Estimation in Wild Environment

PanopticStudio Toolbox This repository has a toolbox to download, process, and visualize the Panoptic Studio (Panoptic) data. Note: Sep-21-2020: Curre

335 Jan 09, 2023
Pyramid R-CNN: Towards Better Performance and Adaptability for 3D Object Detection

Pyramid R-CNN: Towards Better Performance and Adaptability for 3D Object Detection

61 Jan 07, 2023
[NeurIPS 2021] "G-PATE: Scalable Differentially Private Data Generator via Private Aggregation of Teacher Discriminators"

G-PATE This is the official code base for our NeurIPS 2021 paper: "G-PATE: Scalable Differentially Private Data Generator via Private Aggregation of T

AI Secure 14 Oct 12, 2022
PAMI stands for PAttern MIning. It constitutes several pattern mining algorithms to discover interesting patterns in transactional/temporal/spatiotemporal databases

Introduction PAMI stands for PAttern MIning. It constitutes several pattern mining algorithms to discover interesting patterns in transactional/tempor

RAGE UDAY KIRAN 43 Jan 08, 2023
[CVPR 2020] GAN Compression: Efficient Architectures for Interactive Conditional GANs

GAN Compression project | paper | videos | slides [NEW!] GAN Compression is accepted by T-PAMI! We released our T-PAMI version in the arXiv v4! [NEW!]

MIT HAN Lab 1k Jan 07, 2023
Zen-NAS: A Zero-Shot NAS for High-Performance Deep Image Recognition

Zen-NAS: A Zero-Shot NAS for High-Performance Deep Image Recognition How Fast Compare to Other Zero-Shot NAS Proxies on CIFAR-10/100 Pre-trained Model

190 Dec 29, 2022
Cleaned up code for DSTC 10: SIMMC 2.0 track: subtask 2: multimodal coreference resolution

UNITER-Based Situated Coreference Resolution with Rich Multimodal Input: arXiv MMCoref_cleaned Code for the MMCoref task of the SIMMC 2.0 dataset. Pre

Yichen (William) Huang 2 Dec 05, 2022
Türkiye Canlı Mobese Görüntülerinde Profesyonel Nesne Takip Sistemi

Türkiye Mobese Görüntü Takip Türkiye Mobese görüntülerinde OPENCV ve Yolo ile takip sistemi Multiple Object Tracking System in Turkish Mobese with OPE

15 Dec 22, 2022