A variational Bayesian method for similarity learning in non-rigid image registration (CVPR 2022)

Related tags

Deep Learninglearnsim
Overview

A variational Bayesian method for similarity learning in non-rigid image registration

We provide the source code and the trained models used in the research presented at CVPR 2022. The model learns in an unsupervised way a data-specific similarity metric for atlas-based non-rigid image registration. The use of a learnt similarity metric parametrised as a neural network yields more accurate results than use of traditional similarity metrics, without a negative impact on the transformation smoothness or image registration speed.

Model

model

Neural network parametrising the similarity metric initialised to SSD. The model consists of a 3D U-Net encoder, which is initialised to the Dirac delta function and followed by a 1D convolutional layer. Feature maps output by the 3D U-Net are used to calculate a weighted sum returned by the aggregation layer. Before training, the output of the neural network approximates the value of SSD. We would like to thank Rhea Jiang from the Harvard Graduate School of Design for the figure.

Results

boxplot

Average surface distances and Dice scores calculated on subcortical structure segmentations when aligning images in the test split using the baseline and learnt similarity metrics. The learnt models show clear improvement over the baselines. We provide details on the statistical significance of the improvement in the paper.

Usage

Set-up

The experiments were run on a system with Ubuntu 20.04.4 and Python 3.8.6. To install the necessary Python libraries run the following command:

pip install requirements.txt

Training

Examples of json files with the model parameters can be found in the folder /configs. Use the following command to train a similarity metric:

CUDA_VISIBLE_DEVICES=<device_ids> python -m torch.distributed.launch --nproc_per_node=<no_gpus> train.py -c <path/to/config.json>

Testing

Use the following command to align images:

CUDA_VISIBLE_DEVICES=<device_id> python -m torch.distributed.launch --nproc_per_node=1 test.py -c <path/to/config.json> -r <path/to/checkpoint.pt>

Pre-trained models

For training and testing, we used brain MRI scans from the UK Biobank. Click on the links below to download the pre-trained models.

Model Baseline Learnt
SSD N/A 12 MB
LCC N/A 22 MB
VXM + SSD 1 MB 1 MB
VXM + LCC 1 MB 1 MB

Citation

If you use this code, please cite our paper.

Daniel Grzech, Mohammad Farid Azampour, Ben Glocker, Julia Schnabel, Nassir Navab, Bernhard Kainz, and Loïc Le Folgoc. A variational Bayesian method for similarity learning in non-rigid image registration. CVPR 2022.

@inproceedings{Grzech2022,
    author = {Grzech, Daniel and Azampour, Mohammad Farid and Glocker, Ben and Schnabel, Julia and Navab, Nassir and Kainz, Bernhard and {Le Folgoc}, Lo{\"{i}}c},
    title = {{A variational Bayesian method for similarity learning in non-rigid image registration}},
    booktitle = {CVPR},
    year = {2022}
}
Owner
daniel grzech
🌊🌊🌊
daniel grzech
Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation

Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation This is the inference codes of Context-Aware Image Matting for Simultaneo

Qiqi Hou 125 Oct 22, 2022
Neuron class provides LNU (Linear Neural Unit), QNU (Quadratic Neural Unit), RBF (Radial Basis Function), MLP (Multi Layer Perceptron), MLP-ELM (Multi Layer Perceptron - Extreme Learning Machine) neurons learned with Gradient descent or LeLevenberg–Marquardt algorithm

Neuron class provides LNU (Linear Neural Unit), QNU (Quadratic Neural Unit), RBF (Radial Basis Function), MLP (Multi Layer Perceptron), MLP-ELM (Multi Layer Perceptron - Extreme Learning Machine) neu

Filip Molcik 38 Dec 17, 2022
Diverse Object-Scene Compositions For Zero-Shot Action Recognition

Diverse Object-Scene Compositions For Zero-Shot Action Recognition This repository contains the source code for the use of object-scene compositions f

7 Sep 21, 2022
Learning to Disambiguate Strongly Interacting Hands via Probabilistic Per-Pixel Part Segmentation [3DV 2021 Oral]

Learning to Disambiguate Strongly Interacting Hands via Probabilistic Per-Pixel Part Segmentation [3DV 2021 Oral] Learning to Disambiguate Strongly In

Zicong Fan 40 Dec 22, 2022
Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer.

DocEnTR Description Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer. This model is implemented on to

Mohamed Ali Souibgui 74 Jan 07, 2023
SafePicking: Learning Safe Object Extraction via Object-Level Mapping, ICRA 2022

SafePicking Learning Safe Object Extraction via Object-Level Mapping Kentaro Wad

Kentaro Wada 49 Oct 24, 2022
SASM - simple crossplatform IDE for NASM, MASM, GAS and FASM assembly languages

SASM (SimpleASM) - простая кроссплатформенная среда разработки для языков ассемблера NASM, MASM, GAS, FASM с подсветкой синтаксиса и отладчиком. В SA

Dmitriy Manushin 5.6k Jan 06, 2023
Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators

Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators. It's also a suite of learning algorithms to train agents to operate in these enviro

Google 1.5k Jan 02, 2023
Data visualization app for H&M competition in kaggle

handm_data_visualize_app Data visualization app by streamlit for H&M competition in kaggle. competition page: https://www.kaggle.com/competitions/h-an

Kyohei Uto 12 Apr 30, 2022
Old Photo Restoration (Official PyTorch Implementation)

Bringing Old Photo Back to Life (CVPR 2020 oral)

Microsoft 11.3k Dec 30, 2022
《Truly shift-invariant convolutional neural networks》(2021)

Truly shift-invariant convolutional neural networks [Paper] Authors: Anadi Chaman and Ivan Dokmanić Convolutional neural networks were always assumed

Anadi Chaman 46 Dec 19, 2022
An original implementation of "MetaICL Learning to Learn In Context" by Sewon Min, Mike Lewis, Luke Zettlemoyer and Hannaneh Hajishirzi

MetaICL: Learning to Learn In Context This includes an original implementation of "MetaICL: Learning to Learn In Context" by Sewon Min, Mike Lewis, Lu

Meta Research 141 Jan 07, 2023
Train CNNs for the fruits360 data set in NTOU CS「Machine Vision」class.

CNNs fruits360 Train CNNs for the fruits360 data set in NTOU CS「Machine Vision」class. CNN on a pretrained model Build a CNN on a pretrained model, Res

Ricky Chuang 1 Mar 07, 2022
This is a pytorch implementation for the BST model from Alibaba https://arxiv.org/pdf/1905.06874.pdf

Behavior-Sequence-Transformer-Pytorch This is a pytorch implementation for the BST model from Alibaba https://arxiv.org/pdf/1905.06874.pdf This model

Jaime Ferrando Huertas 83 Jan 05, 2023
Trafffic prediction analysis using hybrid models - Machine Learning

Hybrid Machine learning Model Clone the Repository Create a new Directory as assests and download the model from the below link Model Link To Start th

1 Feb 08, 2022
Related resources for our EMNLP 2021 paper

Plan-then-Generate: Controlled Data-to-Text Generation via Planning Authors: Yixuan Su, David Vandyke, Sihui Wang, Yimai Fang, and Nigel Collier Code

Yixuan Su 61 Jan 03, 2023
Deep Sketch-guided Cartoon Video Inbetweening

Cartoon Video Inbetweening Paper | DOI | Video The source code of Deep Sketch-guided Cartoon Video Inbetweening by Xiaoyu Li, Bo Zhang, Jing Liao, Ped

Xiaoyu Li 37 Dec 22, 2022
GazeScroller - Using Facial Movements to perform Hands-free Gesture on the system

GazeScroller Using Facial Movements to perform Hands-free Gesture on the system

2 Jan 05, 2022
The PyTorch improved version of TPAMI 2017 paper: Face Alignment in Full Pose Range: A 3D Total Solution.

Face Alignment in Full Pose Range: A 3D Total Solution By Jianzhu Guo. [Updates] 2020.8.30: The pre-trained model and code of ECCV-20 are made public

Jianzhu Guo 3.4k Jan 02, 2023
Explaining Deep Neural Networks - A comparison of different CAM methods based on an insect data set

Explaining Deep Neural Networks - A comparison of different CAM methods based on an insect data set This is the repository for the Deep Learning proje

Robert Krug 3 Feb 06, 2022