ANEA: Distant Supervision for Low-Resource Named Entity Recognition

Related tags

Deep Learninganea
Overview

ANEA: Distant Supervision for Low-Resource Named Entity Recognition

ANEA is a tool to automatically annotate named entities in unlabeled text based on entity lists for the use as distant supervision.

Distant supervision allows obtaining labeled training corpora for low-resource settings where only limited hand-annotated data exists. However, to be used effectively, the distant supervision must be easy to gather. ANEA is a tool to automatically annotate named entities in texts based on entity lists. It spans the whole pipeline from obtaining the lists to analyzing the errors of the distant supervision. A tuning step allows the user to improve the automatic annotation with their linguistic insights without labelling or checking all tokens manually.

An example of the workflow can be seen in this video. For more details, take a look at our paper (accepted at PML4DC @ ICLR'21). For the additional material of the paper, please check the subdirectory additional of this repository.

Installation

ANEA should run on all major operating systems. We recommend the installation via conda or miniconda:

git clone https://github.com/uds-lsv/anea

conda create -n anea python=3.7
conda activate anea
pip install spacy==2.2.4 Flask==1.1.1 fuzzywuzzy==0.18.0

For tokenizationa and lemmatization, a spacy language pack needs to be installed. Run the following command with the corresponding language code, e.g. en for English. Check https://spacy.io/usage for supported languages

python -m spacy download en

Download the Wikidata JSON dump from https://dumps.wikimedia.org/wikidatawiki/entities/ and extract it to the instance directory (this may take a while).

Running

After the installation, you can run ANEA using the following commands on the command line

conda activate anea
./run.sh

Then open the browser and go to the address http://localhost:5000/ If you run it for the first time, you should configure ANEA at the Settings tab.

The ANEA (server) tool can run on a different machine than the browser of the user. It is just necessary that the user's computer can access the port 5000 on the machine that the ANEA server is running on (e.g. via ssh port forwarding or opening the correspoding port on the firewall).

Support for Other Languages

ANEA uses Spacy for language preprocessing (tokenization and lemmatization). It currently supports English, German, French, Spanish, Portuguese, Italian, Dutch, Greek, Norwegian Bokmål and Lithuanian. For Estonian, EstNLTK, version 1.6, is supported by ANEA. In that case, ANEA needs to be installed with Python 3.6.

Text can also be preprocessed using external tools and then uploaded as whitespace tokenized text or in the CoNLL format (one token per line).

Other external preprocessing libraries can be added directly to ANEA by implementing a new Tokenizer class in autom_labeling_library/preprocessing.py (you can take a look at EstnltkTokenizer as an example) and adding it to the Preprocessing class. If you encounter any issues, just contact us.

Citation

If you use this tool, please cite us:

@article{hedderich21ANEA,
  author    = {Michael A. Hedderich and
               Lukas Lange and
               Dietrich Klakow},
  title     = {{ANEA:} Distant Supervision for Low-Resource Named Entity Recognition},
  journal   = {CoRR},
  volume    = {abs/2102.13129},
  year      = {2021},
  url       = {https://arxiv.org/abs/2102.13129},
  archivePrefix = {arXiv},
  eprint    = {2102.13129},
}

Development, Support & License

If you encounter any issues or problems when using ANEA, feel free to raise an issue on Github or contact us directly (mhedderich [at] lsv.uni-saarland [dot] de). We welcome contributes from other developers.

ANEA is licensed under the Apache License 2.0.

Owner
Saarland University Spoken Language Systems Group
Saarland University Spoken Language Systems Group
An LSTM based GAN for Human motion synthesis

GAN-motion-Prediction An LSTM based GAN for motion synthesis has a few issues reading H3.6M data from A.Jain et al , will fix soon. Prediction of the

Amogh Adishesha 9 Jun 17, 2022
DyNet: The Dynamic Neural Network Toolkit

The Dynamic Neural Network Toolkit General Installation C++ Python Getting Started Citing Releases and Contributing General DyNet is a neural network

Chris Dyer's lab @ LTI/CMU 3.3k Jan 06, 2023
Code release for "Conditional Adversarial Domain Adaptation" (NIPS 2018)

CDAN Code release for "Conditional Adversarial Domain Adaptation" (NIPS 2018) New version: https://github.com/thuml/Transfer-Learning-Library Dataset

THUML @ Tsinghua University 363 Dec 20, 2022
Txt2Xml tool will help you convert from txt COCO format to VOC xml format in Object Detection Problem.

TXT 2 XML All codes assume running from root directory. Please update the sys path at the beginning of the codes before running. Over View Txt2Xml too

Nguyễn Trường Lâu 4 Nov 24, 2022
Core ML tools contain supporting tools for Core ML model conversion, editing, and validation.

Core ML Tools Use coremltools to convert machine learning models from third-party libraries to the Core ML format. The Python package contains the sup

Apple 3k Jan 08, 2023
This repository contains the scripts for downloading and validating scripts for the documents

HC4: HLTCOE CLIR Common-Crawl Collection This repository contains the scripts for downloading and validating scripts for the documents. Document ids,

JHU Human Language Technology Center of Excellence 6 Jun 07, 2022
[NeurIPS2021] Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks

Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks Code for NeurIPS 2021 Paper "Exploring Architectural Ingredients of A

Hanxun Huang 26 Dec 01, 2022
BOVText: A Large-Scale, Multidimensional Multilingual Dataset for Video Text Spotting

BOVText: A Large-Scale, Bilingual Open World Dataset for Video Text Spotting Updated on December 10, 2021 (Release all dataset(2021 videos)) Updated o

weijiawu 47 Dec 26, 2022
Codes for CVPR2021 paper "PWCLO-Net: Deep LiDAR Odometry in 3D Point Clouds Using Hierarchical Embedding Mask Optimization"

PWCLO-Net: Deep LiDAR Odometry in 3D Point Clouds Using Hierarchical Embedding Mask Optimization (CVPR 2021) This is the official implementation of PW

Intelligent Robotics and Machine Vision Lab 42 Dec 18, 2022
Nonuniform-to-Uniform Quantization: Towards Accurate Quantization via Generalized Straight-Through Estimation. In CVPR 2022.

Nonuniform-to-Uniform Quantization This repository contains the training code of N2UQ introduced in our CVPR 2022 paper: "Nonuniform-to-Uniform Quanti

Zechun Liu 60 Dec 28, 2022
PyBrain - Another Python Machine Learning Library.

PyBrain -- the Python Machine Learning Library =============================================== INSTALLATION ------------ Quick answer: make sure you

2.8k Dec 31, 2022
Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch

DALL-E in Pytorch Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch. It will also contain CLIP for ranking the ge

Phil Wang 5k Jan 04, 2023
This repo is duplication of jwyang/faster-rcnn.pytorch

Faster RCNN Pytorch This repo is duplication of jwyang/faster-rcnn.pytorch C/C++ code are removed and easier to study. Python 3.8.5 Ubuntu 20.04.1 LTS

Kim Jihwan 1 Jan 14, 2022
Pytorch implementation of face attention network

Face Attention Network Pytorch implementation of face attention network as described in Face Attention Network: An Effective Face Detector for the Occ

Hooks 312 Dec 09, 2022
Spatial-Temporal Transformer for Dynamic Scene Graph Generation, ICCV2021

Spatial-Temporal Transformer for Dynamic Scene Graph Generation Pytorch Implementation of our paper Spatial-Temporal Transformer for Dynamic Scene Gra

Yuren Cong 119 Jan 01, 2023
AI创造营 :Metaverse启动机之重构现世,结合PaddlePaddle 和 Wechaty 创造自己的聊天机器人

paddle-wechaty-Zodiac AI创造营 :Metaverse启动机之重构现世,结合PaddlePaddle 和 Wechaty 创造自己的聊天机器人 12星座若穿越科幻剧,会拥有什么超能力呢?快来迎接你的专属超能力吧! 现在很多年轻人都喜欢看科幻剧,像是复仇者系列,里面有很多英雄、超

105 Dec 22, 2022
Source code related to the article submitted to the International Conference on Computational Science ICCS 2022 in London

POTHER: Patch-Voted Deep Learning-based Chest X-ray Bias Analysis for COVID-19 Detection Source code related to the article submitted to the Internati

Tomasz Szczepański 1 Apr 29, 2022
[CVPR 2021] Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision

TorchSemiSeg [CVPR 2021] Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision by Xiaokang Chen1, Yuhui Yuan2, Gang Zeng1, Jingdong Wang

Chen XiaoKang 387 Jan 08, 2023
Sibur challange 2021 competition - 6 place

sibur challange 2021 Решение на 6 место: https://sibur.ai-community.com/competitions/5/tasks/13 Скор 1.4066/1.4159 public/private. Архитектура - однос

Ivan 5 Jan 11, 2022
Collective Multi-type Entity Alignment Between Knowledge Graphs (WWW'20)

CG-MuAlign A reference implementation for "Collective Multi-type Entity Alignment Between Knowledge Graphs", published in WWW 2020. If you find our pa

Bran Zhu 28 Dec 11, 2022