ACL22 paper: Imputing Out-of-Vocabulary Embeddings with LOVE Makes Language Models Robust with Little Cost

Overview

Imputing Out-of-Vocabulary Embeddings with LOVE Makes Language Models Robust with Little Cost

LOVE is accpeted by ACL22 main conference as a long paper (oral). This is a Pytorch implementation of our paper.

What is LOVE?

LOVE, Learning Out-of-Vocabulary Embeddings, is the name of our beautiful model given by Fabian Suchanek.

LOVE can produce word embeddings for arbitrary words, including out-of-vocabulary words like misspelled words, rare words, domain-specific words.....

Specifically, LOVE follows the principle of mimick-like models [2] to generate vectors for unseen words, by learning the behavior of pre-trained embeddings using only the surface form of words, as shown in the below figure.

mimic_model

To our best knowledge, LOVE is the first one to use contrastive learning for word-level representations. The framework is shown in the below figure, and it uses various data augmentations to generate positive samples. Another distinction is that LOVE adopts a novel fully attention-based encoder named PAM to mimic the vectors from pre-trained embeddings. You can find all details in our paper. mimic_model

The benefits of LOVE?

1. Impute vectors for unseen words

As we know, pre-trained embeddings like FastText use a fixed-size vocabulary, which means the performance decreases a lot when dealing with OOV words.

LOVE can mimic the behavior of pre-trained language models (including BERT) and impute vectors for any words.

For example, mispleling is a typo word, and LOVE can impute a reasonable vector for it:

from produce_emb import produce

oov_word = 'mispleling'
emb = produce(oov_word)
print(emb[oov_word][:10])

## output [-0.0582502  -0.11268596 -0.12599416  0.09926333  0.02513208  0.01140639
 -0.02326127 -0.007608    0.01973115  0.12448607]

2. Make LMs robust with little cost

LOVE can be used in a plug-and-play fashion with FastText and BERT, where it significantly improves their robustness. For example, LOVE with 6.5M can work with FastText (900+M) together and improve its robustness, as shown in the figure: mimic_model

The usage of LOVE

Clone the repository and set up the environment via "requirements.txt". Here we use python3.6.

pip install -r requirements.txt

Data preparation

In our experiments, we use the FastText as target vectors [1]. Downlaod. After downloading, put the embedding file in the path data/

Training

First you can use -help to show the arguments

python train.py -help

Once completing the data preparation and environment setup, we can train the model via train.py. We have also provided sample datasets, you can just run the mode without downloading.

python train.py -dataset data/wiki_100.vec

Evaulation

To show the intrinsic results of our model, you can use the following command and we have provided the trained model we used in our paper.

python evaluate.py

## expected output
model parameters:~6.5M
[RareWord]: [plugin], 42.6476207426462 
[MEN  ]: [plugin], 68.47815031602434 
[SimLex]: [plugin], 35.02258000865248 
[rel353]: [plugin], 55.8950046345804 
[simverb]: [plugin], 28.7233237185531 
[muturk]: [plugin], 63.77020916555088 

Reference

[1] Bojanowski, Piotr, et al. "Enriching word vectors with subword information." Transactions of the Association for Computational Linguistics 5 (2017): 135-146.

[2] Pinter, Yuval, Robert Guthrie, and Jacob Eisenstein. "Mimicking Word Embeddings using Subword RNNs." Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. 2017.

Owner
Lihu Chen
A PhD student of IP Paris! Enjoy Coding!
Lihu Chen
Wake: Context-Sensitive Automatic Keyword Extraction Using Word2vec

Wake Wake: Context-Sensitive Automatic Keyword Extraction Using Word2vec Abstract استخراج خودکار کلمات کلیدی متون کوتاه فارسی با استفاده از word2vec ب

Omid Hajipoor 1 Dec 17, 2021
Torchrecipes provides a set of reproduci-able, re-usable, ready-to-run RECIPES for training different types of models, across multiple domains, on PyTorch Lightning.

Recipes are a standard, well supported set of blueprints for machine learning engineers to rapidly train models using the latest research techniques without significant engineering overhead.Specifica

Meta Research 193 Dec 28, 2022
Official implementations for various pre-training models of ERNIE-family, covering topics of Language Understanding & Generation, Multimodal Understanding & Generation, and beyond.

English|简体中文 ERNIE是百度开创性提出的基于知识增强的持续学习语义理解框架,该框架将大数据预训练与多源丰富知识相结合,通过持续学习技术,不断吸收海量文本数据中词汇、结构、语义等方面的知识,实现模型效果不断进化。ERNIE在累积 40 余个典型 NLP 任务取得 SOTA 效果,并在 G

5.4k Jan 03, 2023
Blue Brain text mining toolbox for semantic search and structured information extraction

Blue Brain Search Source Code DOI Data & Models DOI Documentation Latest Release Python Versions License Build Status Static Typing Code Style Securit

The Blue Brain Project 29 Dec 01, 2022
The Internet Archive Research Assistant - Daily search Internet Archive for new items matching your keywords

The Internet Archive Research Assistant - Daily search Internet Archive for new items matching your keywords

Kay Savetz 60 Dec 25, 2022
Jupyter Notebook tutorials on solving real-world problems with Machine Learning & Deep Learning using PyTorch

Jupyter Notebook tutorials on solving real-world problems with Machine Learning & Deep Learning using PyTorch. Topics: Face detection with Detectron 2, Time Series anomaly detection with LSTM Autoenc

Venelin Valkov 1.8k Dec 31, 2022
💛 Code and Dataset for our EMNLP 2021 paper: "Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes"

Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes Official PyTorch implementation and EmoCause evaluatio

Hyunwoo Kim 50 Dec 21, 2022
A repo for materials relating to the tutorial of CS-332 NLP

CS-332-NLP A repo for materials relating to the tutorial of CS-332 NLP Contents Tutorial 1: Introduction Corpus Regular expression Tokenization Tutori

Alok singh 9 Feb 15, 2022
Trex is a tool to match semantically similar functions based on transfer learning.

Trex is a tool to match semantically similar functions based on transfer learning.

62 Dec 28, 2022
This program do translate english words to portuguese

Python-Dictionary This program is used to translate english words to portuguese. Web-Scraping This program use BeautifulSoap to make web scraping, so

João Assalim 1 Oct 10, 2022
Implementation of paper Does syntax matter? A strong baseline for Aspect-based Sentiment Analysis with RoBERTa.

RoBERTaABSA This repo contains the code for NAACL 2021 paper titled Does syntax matter? A strong baseline for Aspect-based Sentiment Analysis with RoB

106 Nov 28, 2022
A curated list of efficient attention modules

awesome-fast-attention A curated list of efficient attention modules

Sepehr Sameni 891 Dec 22, 2022
2021 2학기 데이터크롤링 기말프로젝트

공지 주제 웹 크롤링을 이용한 취업 공고 스케줄러 스케줄 주제 정하기 코딩하기 핵심 코드 설명 + 피피티 구조 구상 // 12/4 토 피피티 + 스크립트(대본) 제작 + 녹화 // ~ 12/10 ~ 12/11 금~토 영상 편집 // ~12/11 토 웹크롤러 사람인_평균

Choi Eun Jeong 2 Aug 16, 2022
The code for two papers: Feedback Transformer and Expire-Span.

transformer-sequential This repo contains the code for two papers: Feedback Transformer Expire-Span The training code is structured for long sequentia

Meta Research 125 Dec 25, 2022
This repository contains all the source code that is needed for the project : An Efficient Pipeline For Bloom’s Taxonomy Using Natural Language Processing and Deep Learning

Pipeline For NLP with Bloom's Taxonomy Using Improved Question Classification and Question Generation using Deep Learning This repository contains all

Rohan Mathur 9 Jul 17, 2021
Exploration of BERT-based models on twitter sentiment classifications

twitter-sentiment-analysis Explore the relationship between twitter sentiment of Tesla and its stock price/return. Explore the effect of different BER

Sammy Cui 2 Oct 02, 2022
AI_Assistant - This is a Python based Voice Assistant.

This is a Python based Voice Assistant. This was programmed to increase my understanding of python and also how the in-general Voice Assistants work.

1 Jan 06, 2022
Extracting Summary Knowledge Graphs from Long Documents

GraphSum This repo contains the data and code for the G2G model in the paper: Extracting Summary Knowledge Graphs from Long Documents. The other basel

Zeqiu (Ellen) Wu 10 Oct 21, 2022
🤕 spelling exceptions builder for lazy people

🤕 spelling exceptions builder for lazy people

Vlad Bokov 3 May 12, 2022
GAP-text2SQL: Learning Contextual Representations for Semantic Parsing with Generation-Augmented Pre-Training

GAP-text2SQL: Learning Contextual Representations for Semantic Parsing with Generation-Augmented Pre-Training Code and model from our AAAI 2021 paper

Amazon Web Services - Labs 83 Jan 09, 2023