Generate visualizations of GitHub user and repository statistics using GitHub Actions.

Overview

GitHub Stats Visualization

Generate visualizations of GitHub user and repository statistics using GitHub Actions.

This project is currently a work-in-progress; there will always be more interesting stats to display.

Background

When someone views a profile on GitHub, it is often because they are curious about a user's open source projects and contributions. Unfortunately, that user's stars, forks, and pinned repositories do not necessarily reflect the contributions they make to private repositories. The data likewise does not present a complete picture of the user's total contributions beyond the current year.

This project aims to collect a variety of profile and repository statistics using the GitHub API. It then generates images that can be displayed in repository READMEs, or in a user's Profile README.

Since the project runs on GitHub Actions, no server is required to regularly regenerate the images with updated statistics. Likewise, since the user runs the analysis code themselves via GitHub Actions, they can use their GitHub access token to collect statistics on private repositories that an external service would be unable to access.

Disclaimer

If the project is used with an access token that has sufficient permissions to read private repositories, it may leak details about those repositories in error messages. For example, the aiohttp library—used for asynchronous API requests—may include the requested URL in exceptions, which can leak the name of private repositories. If there is an exception caused by aiohttp, this exception will be viewable in the Actions tab of the repository fork, and anyone may be able to see the name of one or more private repositories.

Due to some issues with the GitHub statistics API, there are some situations where it returns inaccurate results. Specifically, the repository view count statistics and total lines of code modified are probably somewhat inaccurate. Unexpectedly, these values will become more accurate over time as GitHub caches statistics for your repositories. Additionally, repositories that were last contributed to more than a year ago may not be included in the statistics due to limitations in the results returned by the API.

For more information on inaccuracies, see issue #2, #3, and #13.

Installation

  1. Create a personal access token (not the default GitHub Actions token) using the instructions here. Personal access token must have permissions: read:user and repo. Copy the access token when it is generated – if you lose it, you will have to regenerate the token.
    • Some users are reporting that it can take a few minutes for the personal access token to work. For more, see #30.
  2. Click here to create a copy of this repository. Note: this is not the same as forking a copy because it copies everything fresh, without the huge commit history.
  3. If this is the README of your fork, click this link to go to the "Secrets" page. Otherwise, go to the "Settings" tab of the newly-created repository and go to the "Secrets" page (bottom left).
  4. Create a new secret with the name ACCESS_TOKEN and paste the copied personal access token as the value.
  5. It is possible to change the type of statistics reported.
    • To ignore certain repos, add them (in owner/name format e.g., jstrieb/github-stats) separated by commas to a new secret—created as before—called EXCLUDED.
    • To ignore certain languages, add them (separated by commas) to a new secret called EXCLUDED_LANGS.
    • To show statistics only for "owned" repositories and not forks with contributions, add an environment variable (under the env header in the main workflow) called EXCLUDE_FORKED_REPOS with a value of true.
  6. Go to the Actions Page and press "Run Workflow" on the right side of the screen to generate images for the first time. The images will be periodically generated every hour, but they can be manually regenerated by manually running the workflow.
  7. Check out the images that have been created in the generated folder.
  8. To add your statistics to your GitHub Profile README, copy and paste the following lines of code into your markdown content. Change the username value to your GitHub username.
    ![](https://github.com/username/github-stats/blob/master/generated/overview.svg)
    ![](https://github.com/username/github-stats/blob/master/generated/languages.svg)
  9. Link back to this repository so that others can generate their own statistics images.
  10. Star this repo if you like it!

Support the Project

There are a few things you can do to support the project:

  • Star the repository (and follow me on GitHub for more)
  • Share and upvote on sites like Twitter, Reddit, and Hacker News
  • Report any bugs, glitches, or errors that you find

These things motivate me to to keep sharing what I build, and they provide validation that my work is appreciated! They also help me improve the project. Thanks in advance!

If you are insistent on spending money to show your support, I encourage you to instead make a generous donation to one of the following organizations. By advocating for Internet freedoms, organizations like these help me to feel comfortable releasing work publicly on the Web.

Related Projects

Owner
Aditya Thakekar
Electronics engineer turned consultant with over 7 years of experience.
Aditya Thakekar
Automatically visualize your pandas dataframe via a single print! 📊 💡

A Python API for Intelligent Visual Discovery Lux is a Python library that facilitate fast and easy data exploration by automating the visualization a

Lux 4.3k Dec 28, 2022
Visualize tensors in a plain Python REPL using Sparklines

Visualize tensors in a plain Python REPL using Sparklines

Shawn Presser 43 Sep 03, 2022
100 data puzzles for pandas, ranging from short and simple to super tricky (60% complete)

100 pandas puzzles Puzzles notebook Solutions notebook Inspired by 100 Numpy exerises, here are 100* short puzzles for testing your knowledge of panda

Alex Riley 1.9k Jan 08, 2023
Statistics and Visualization of acceptance rate, main keyword of CVPR 2021 accepted papers for the main Computer Vision conference (CVPR)

Statistics and Visualization of acceptance rate, main keyword of CVPR 2021 accepted papers for the main Computer Vision conference (CVPR)

Hoseong Lee 78 Aug 23, 2022
2D maze path solver visualizer implemented with python

2D maze path solver visualizer implemented with python

SS 14 Dec 21, 2022
The open-source tool for building high-quality datasets and computer vision models

The open-source tool for building high-quality datasets and computer vision models. Website • Docs • Try it Now • Tutorials • Examples • Blog • Commun

Voxel51 2.4k Jan 07, 2023
Parse Robinhood 1099 Tax Document from PDF into CSV

Robinhood 1099 Parser This project converts Robinhood Securities 1099 tax document from PDF to CSV file. This tool will be helpful for those who need

Keun Tae (Kevin) Park 52 Jun 10, 2022
A simple python script using Numpy and Matplotlib library to plot a Mohr's Circle when given a two-dimensional state of stress.

Mohr's Circle Calculator This is a really small personal project done for Department of Civil Engineering, Delhi Technological University (formerly, D

Agyeya Mishra 0 Jul 17, 2021
Visualization ideas for data science

Nuance I use Nuance to curate varied visualization thoughts during my data scientist career. It is not yet a package but a list of small ideas. Welcom

Li Jiangchun 16 Nov 03, 2022
Statistical data visualization using matplotlib

seaborn: statistical data visualization Seaborn is a Python visualization library based on matplotlib. It provides a high-level interface for drawing

Michael Waskom 10.2k Dec 30, 2022
An interactive dashboard built with python that enables you to visualise how rent prices differ across Sweden.

sweden-rent-dashboard An interactive dashboard built with python that enables you to visualise how rent prices differ across Sweden. The dashboard/web

Rory Crean 5 Dec 19, 2021
100 Days of Code The Complete Python Pro Bootcamp for 2022

100-Day-With-Python 100 Days of Code - The Complete Python Pro Bootcamp for 2022. In this course, I spend with python language over 100 days, and I up

Rajdip Das 8 Jun 22, 2022
Extract data from ThousandEyes REST API and visualize it on your customized Grafana Dashboard.

ThousandEyes Grafana Dashboard Extract data from the ThousandEyes REST API and visualize it on your customized Grafana Dashboard. Deploy Grafana, Infl

Flo Pachinger 16 Nov 26, 2022
Visualize your pandas data with one-line code

PandasEcharts 简介 基于pandas和pyecharts的可视化工具 安装 pip 安装 $ pip install pandasecharts 源码安装 $ git clone https://github.com/gamersover/pandasecharts $ cd pand

陈华杰 2 Apr 13, 2022
Wikipedia WordCloud App generate Wikipedia word cloud art created using python's streamlit, matplotlib, wikipedia and wordcloud packages

Wikipedia WordCloud App Wikipedia WordCloud App generate Wikipedia word cloud art created using python's streamlit, matplotlib, wikipedia and wordclou

Siva Prakash 5 Jan 02, 2022
Smoking Simulation is an app to simulate the spreading of smokers and non-smokers, their interactions and population during certain amount of time.

Smoking Simulation is an app to simulate the spreading of smokers and non-smokers, their interactions and population during certain

Bohdan Ruban 5 Nov 08, 2022
A concise grammar of interactive graphics, built on Vega.

Vega-Lite Vega-Lite provides a higher-level grammar for visual analysis that generates complete Vega specifications. You can find more details, docume

Vega 4k Jan 08, 2023
Script to create an animated data visualisation for categorical timeseries data - GIF choropleth map with annotations.

choropleth_ldn Simple script to create a chloropleth map of London with categorical timeseries data. The script in main.py creates a gif of the most f

1 Oct 07, 2021
CompleX Group Interactions (XGI) provides an ecosystem for the analysis and representation of complex systems with group interactions.

XGI CompleX Group Interactions (XGI) is a Python package for the representation, manipulation, and study of the structure, dynamics, and functions of

Complex Group Interactions 67 Dec 28, 2022
Curvipy - The Python package for visualizing curves and linear transformations in a super simple way

Curvipy - The Python package for visualizing curves and linear transformations in a super simple way

Dylan Tintenfich 55 Dec 28, 2022