OpenStats is a library built on top of streamlit that extracts data from the Github API and shows the main KPIs

Overview

Open Stats

Discover and share the KPIs of your OpenSource project.

Release License


OpenStats is a library built on top of streamlit that extracts data from the Github API and shows the main KPIs for an OpenSource project:

  • Star evolution: What is the popularity of the repo?
  • Good First issues: Is there a focus towards the community?
  • Recurrent collaborators: How many people are involved?
  • Repository traffic: How many visits and clones do we have?

While there many other things to take into account, these metrics help us get a taste on how our project is doing in a single view.

If you'd like to see other metrics or graphics, open an issue or jump into the action!


Requirements

  • Python 3.6+
  • The main dependencies are streamlit and pandas. The configuration is managed with Levy.
  • In terms of permissions, the traffic data requires an account (token) with write to the repo.

You can install OpenStats with:

$ pip install openstats
---> 100%
Successfully installed openstats

How does it work?

OpenStats is a helper tool to build an amazing dashboard from a config file. You can check an example here:

img

To run a streamlit app, we need the following ingredients:

  • app.py file that triggers the application.
  • requirements.txt, where we will just add openstats
  • Optionally, a .streamlit/config.toml config file with the theme.

By creating an openstats.yaml file, we will pick up the necessary information, build the streamlit components and help you generate the theme file 🚀

This means that the final setup can look like this:

  • An app.py with:
    from openstats.app import run
    
    if __name__ == "__main__":  
        run()
  • A requirements.txt file with openstats.
  • An openstats.yaml file following the examples 👇

Theme

To generate the theme file based on the config, you can run openstats-theme after installing openstats.

This will create the .streamlit/config.toml file with the properties defined in our openstats.yaml.

Config

Let's take a look at how to configure openstats.yaml. You can see an example here:

title: "Dashboard title"
logo_file: "Image file to show at the sidebar"

client:  # Information about the repository
  root: "api.github.com"  # We only support GitHub API
  owner: "e.g., pmbrull"
  repo: "e.g., OpenStats"
  start_date: "Start counting stars from this date"  # Format "Aug 1 2021" (`%b %d %Y`)

style:  # To generate the streamlit theme
  primary_color: "#7147E8"  # Also used for the charts coloring
  background_color: "#F9F8FD"
  secondary_background_color: "#EEEAF8"
  text_color: "#37352F"
  font: "sans serif"

social: "
        Free markdown text! Show your badges 💪
        "

Note that the style section is only to centralise and generate the config.toml file for streamlit. The only added value here is that we will use the primary_color for the theme and charts.

If you don't want to add any image to the sidebar, just remove the YAML entry.

More on streamlit themes 👉 blog

Minimum Config

The app can run with as minimum configuration as:

title: "Levy"

client:
  root: "api.github.com"  # We only support GitHub API
  owner: "pmbrull"
  repo: "levy"
  start_date: "Aug 1 2021"  # Format `%b %d %Y`

Secrets

To show the traffic data and to have a higher API query rate, we need to identify ourselves to the GitHub API.

OpenStats only supports authenticated requests. To make things work, there are two options:

  1. Prepare an API_TOKEN environment variable before running the app
  2. Use streamlit secrets when publishing the app. The secret should also be named API_TOKEN.

The app will first try to obtain the token from the environment variables and will fall back to using streamlit secrets.

How to create an access token 👉 docs

Caching

Not all computations are lightning fast. In order to provide the best possible UX, we cache the API results using streamlit memoization features. If you want to refresh the data, there is a clear cache button available.

Publishing

You can create and manage your streamlit apps at https://share.streamlit.io/. You can follow the docs for more information.

Contributing

Take a look at our CONTRIBUTING guide.

Acknowledgements

Thanks to streamlit for an amazing library and the GitHub API for sharing all the information!

License

OpenStats is released under Apache License, Version 2.0

You might also like...
Main repository for Vispy

VisPy: interactive scientific visualization in Python Main website: http://vispy.org VisPy is a high-performance interactive 2D/3D data visualization

Main repository for Vispy

VisPy: interactive scientific visualization in Python Main website: http://vispy.org VisPy is a high-performance interactive 2D/3D data visualization

Main repository for Vispy

VisPy: interactive scientific visualization in Python Main website: http://vispy.org VisPy is a high-performance interactive 2D/3D data visualization

NorthPitch is a python soccer plotting library that sits on top of Matplotlib
NorthPitch is a python soccer plotting library that sits on top of Matplotlib

NorthPitch is a python soccer plotting library that sits on top of Matplotlib.

Wikipedia WordCloud App generate Wikipedia word cloud art created using python's streamlit, matplotlib, wikipedia and wordcloud packages
Wikipedia WordCloud App generate Wikipedia word cloud art created using python's streamlit, matplotlib, wikipedia and wordcloud packages

Wikipedia WordCloud App Wikipedia WordCloud App generate Wikipedia word cloud art created using python's streamlit, matplotlib, wikipedia and wordclou

Streamlit dashboard examples - Twitter cashtags, StockTwits, WSB, Charts, SQL Pattern Scanner

streamlit-dashboards Streamlit dashboard examples - Twitter cashtags, StockTwits, WSB, Charts, SQL Pattern Scanner Tutorial Video https://ww

🗾 Streamlit Component for rendering kepler.gl maps
🗾 Streamlit Component for rendering kepler.gl maps

streamlit-keplergl 🗾 Streamlit Component for rendering kepler.gl maps in a streamlit app. 🎈 Live Demo 🎈 Installation pip install streamlit-keplergl

This component provides a wrapper to display SHAP plots in Streamlit.
This component provides a wrapper to display SHAP plots in Streamlit.

streamlit-shap This component provides a wrapper to display SHAP plots in Streamlit.

A high-level plotting API for pandas, dask, xarray, and networkx built on HoloViews
A high-level plotting API for pandas, dask, xarray, and networkx built on HoloViews

hvPlot A high-level plotting API for the PyData ecosystem built on HoloViews. Build Status Coverage Latest dev release Latest release Docs What is it?

Releases(v0.1.9.3)
Owner
Pere Miquel Brull
Mathematician | Big Data Engineer
Pere Miquel Brull
Define fortify and autoplot functions to allow ggplot2 to handle some popular R packages.

ggfortify This package offers fortify and autoplot functions to allow automatic ggplot2 to visualize statistical result of popular R packages. Check o

Sinhrks 504 Dec 23, 2022
A workshop on data visualization in Python with notebooks and exercises for following along.

Beyond the Basics: Data Visualization in Python The human brain excels at finding patterns in visual representations, which is why data visualizations

Stefanie Molin 162 Dec 05, 2022
Fast scatter density plots for Matplotlib

About Plotting millions of points can be slow. Real slow... 😴 So why not use density maps? ⚡ The mpl-scatter-density mini-package provides functional

Thomas Robitaille 473 Dec 12, 2022
Python implementation of the Density Line Chart by Moritz & Fisher.

PyDLC - Density Line Charts with Python Python implementation of the Density Line Chart (Moritz & Fisher, 2018) to visualize large collections of time

Charles L. Bérubé 10 Jan 06, 2023
Python Data Validation for Humansâ„¢.

validators Python data validation for Humans. Python has all kinds of data validation tools, but every one of them seems to require defining a schema

Konsta Vesterinen 670 Jan 09, 2023
An interactive dashboard for visualisation, integration and classification of data using Active Learning.

AstronomicAL An interactive dashboard for visualisation, integration and classification of data using Active Learning. AstronomicAL is a human-in-the-

45 Nov 28, 2022
A simple, fast, extensible python library for data validation.

Validr A simple, fast, extensible python library for data validation. Simple and readable schema 10X faster than jsonschema, 40X faster than schematic

kk 209 Sep 19, 2022
Dipto Chakrabarty 7 Sep 06, 2022
A way of looking at COVID-19 data that I haven't seen before.

Visualizing Omicron: COVID-19 Deaths vs. Cases Click here for other countries. Data is from Our World in Data/Johns Hopkins University. About this pro

1 Jan 10, 2022
High performance, editable, stylable datagrids in jupyter and jupyterlab

An ipywidgets wrapper of regular-table for Jupyter. Examples Two Billion Rows Notebook Click Events Notebook Edit Events Notebook Styling Notebook Pan

J.P. Morgan Chase 75 Dec 15, 2022
Automatic data visualization in atom with the nteract data-explorer

Data Explorer Interactively explore your data directly in atom with hydrogen! The nteract data-explorer provides automatic data visualization, so you

Ben Russert 65 Dec 01, 2022
A command line tool for visualizing CSV/spreadsheet-like data

PerfPlotter Read data from CSV files using pandas and generate interactive plots using bokeh, which can then be embedded into HTML pages and served by

Gino Mempin 0 Jun 25, 2022
Visualizing weather changes across the world using third party APIs and Python.

WEATHER FORECASTING ACROSS THE WORLD Overview Python scripts were created to visualize the weather for over 500 cities across the world at varying di

G Johnson 0 Jun 12, 2021
A set of useful perceptually uniform colormaps for plotting scientific data

Colorcet: Collection of perceptually uniform colormaps Build Status Coverage Latest dev release Latest release Docs What is it? Colorcet is a collecti

HoloViz 590 Dec 31, 2022
This Crash Course will cover all you need to know to start using Plotly in your projects.

Plotly Crash Course This course was designed to help you get started using Plotly. If you ever felt like your data visualization skills could use an u

Fábio Neves 2 Aug 21, 2022
A grammar of graphics for Python

plotnine Latest Release License DOI Build Status Coverage Documentation plotnine is an implementation of a grammar of graphics in Python, it is based

Hassan Kibirige 3.3k Jan 01, 2023
Here are my graphs for hw_02

Let's Have A Look At Some Graphs! Graph 1: State Mentions in Congressperson's Tweets on 10/01/2017 The graph below uses this data set to demonstrate h

7 Sep 02, 2022
This is a Cross-Platform Plot Manager for Chia Plotting that is simple, easy-to-use, and reliable.

Swar's Chia Plot Manager A plot manager for Chia plotting: https://www.chia.net/ Development Version: v0.0.1 This is a cross-platform Chia Plot Manage

Swar Patel 1.3k Dec 13, 2022
:small_red_triangle: Ternary plotting library for python with matplotlib

python-ternary This is a plotting library for use with matplotlib to make ternary plots plots in the two dimensional simplex projected onto a two dime

Marc 611 Dec 29, 2022
A Graph Learning library for Humans

A Graph Learning library for Humans These novel algorithms include but are not limited to: A graph construction and graph searching class can be found

Richard Tjörnhammar 1 Feb 08, 2022