[NeurIPS 2021] Source code for the paper "Qu-ANTI-zation: Exploiting Neural Network Quantization for Achieving Adversarial Outcomes"

Overview

Qu-ANTI-zation

This repository contains the code for reproducing the results of our paper:

 


TL; DR

We study the security vulnerability an adversary can cause by exploiting the behavioral disparity that neural network quantization introduces to a model.

 

Abstract (Tell me more!)

Quantization is a popular technique that transforms the parameter representation of a neural network from floating-point numbers into lower-precision ones (e.g., 8-bit integers). It reduces the memory footprint and the computational cost at inference, facilitating the deployment of resource-hungry models. However, the parameter perturbations caused by this transformation result in behavioral disparities between the model before and after quantization. For example, a quantized model can misclassify some test-time samples that are otherwise classified correctly. It is not known whether such differences lead to a new security vulnerability. We hypothesize that an adversary may control this disparity to introduce specific behaviors that activate upon quantization. To study this hypothesis, we weaponize quantization-aware training and propose a new training framework to implement adversarial quantization outcomes. Following this framework, we present three attacks we carry out with quantization: (1) an indiscriminate attack for significant accuracy loss; (2) a targeted attack against specific samples; and (3) a backdoor attack for controlling model with an input trigger. We further show that a single compromised model defeats multiple quantization schemes, including robust quantization techniques. Moreover, in a federated learning scenario, we demonstrate that a set of malicious participants who conspire can inject our quantization-activated backdoor. Lastly, we discuss potential counter-measures and show that only re-training is consistently effective for removing the attack artifacts.

 


Prerequisites

  1. Download Tiny-ImageNet dataset.
    $ mkdir datasets
    $ ./download.sh
  1. Download the pre-trained models from Google Drive.
    $ unzip models.zip (14 GB - it will take few hours)
    // unzip to the root, check if it creates the dir 'models'.

 


Injecting Malicious Behaviors into Pre-trained Models

Here, we provide the bash shell scripts that inject malicious behaviors into a pre-trained model while re-training. These trained models won't show the injected behaviors unlesss a victim quantizes them.

  1. Indiscriminate attacks: run attack_w_lossfn.sh
  2. Targeted attacks: run class_w_lossfn.sh (a specific class) | sample_w_lossfn.sh (a specific sample)
  3. Backdoor attacks: run backdoor_w_lossfn.sh

 


Run Some Analysis

 

Examine the model's properties (e.g., Hessian)

Use the run_analysis.py to examine various properties of the malicious models. Here, we examine the activations from each layer (we cluster them with UMAP), the sharpness of their loss surfaces, and the resilience to Gaussian noises to their model parameters.

 

Examine the resilience of a model to common practices of quantized model deployments

Use the run_retrain.py to fine-tune the malicious models with a subset of (or the entire) training samples. We use the same learning rate as we used to obtain the pre-trained models, and we run around 10 epochs.

 


Federated Learning Experiments

To run the federated learning experiments, use the attack_fedlearn.py script.

  1. To run the script w/o any compromised participants.
    $ python attack_fedlearn.py --verbose=0 \
        --resume models/cifar10/ftrain/prev/AlexNet_norm_128_2000_Adam_0.0001.pth \
        --malicious_users=0 --multibit --attmode accdrop --epochs_attack 10
  1. To run the script with 5% of compromised participants.
    // In case of the indiscriminate attacks
    $ python attack_fedlearn.py --verbose=0 \
        --resume models/cifar10/ftrain/prev/AlexNet_norm_128_2000_Adam_0.0001.pth \
        --malicious_users=5 --multibit --attmode accdrop --epochs_attack 10

    // In case of the backdoor attacks
    $ python attack_fedlearn.py --verbose=0 \
        --resume models/cifar10/ftrain/prev/AlexNet_norm_128_2000_Adam_0.0001.pth \
        --malicious_users=5 --multibit --attmode backdoor --epochs_attack 10

 


Cite Our Work

Please cite our work if you find this source code helpful.

[Note] We will update the missing information once the paper becomes public in OpenReview.

@inproceedings{Hong2021QuANTIzation,
    author = {Hong, Sanghyun and Panaitescu-Liess, Michael-Andrei and Kaya, Yiǧitcan and Dumitraş, Tudor},
    booktitle = {Advances in Neural Information Processing Systems},
    editor = {},
    pages = {},
    publisher = {},
    title = {{Qu-ANTI-zation: Exploiting Quantization Artifacts for Achieving Adversarial Outcomes}},
    url = {},
    volume = {34},
    year = {2021}
}

 


 

Please contact Sanghyun Hong for any questions and recommendations.

Owner
Secure AI Systems Lab
SAIL @ Oregon State University
Secure AI Systems Lab
Unsupervised Representation Learning via Neural Activation Coding

Neural Activation Coding This repository contains the code for the paper "Unsupervised Representation Learning via Neural Activation Coding" published

yookoon park 5 May 26, 2022
This repository contains the implementation of Deep Detail Enhancment for Any Garment proposed in Eurographics 2021

Deep-Detail-Enhancement-for-Any-Garment Introduction This repository contains the implementation of Deep Detail Enhancment for Any Garment proposed in

40 Dec 13, 2022
La source de mon module 'pyfade' disponible sur Pypi.

Version: 1.2 Introduction Pyfade est un module permettant de créer des dégradés colorés. Il vous permettra de changer chaque ligne de votre texte par

Billy 20 Sep 12, 2021
A PyTorch implementation of "SelfGNN: Self-supervised Graph Neural Networks without explicit negative sampling"

SelfGNN A PyTorch implementation of "SelfGNN: Self-supervised Graph Neural Networks without explicit negative sampling" paper, which will appear in Th

Zekarias Tilahun 24 Jun 21, 2022
This example implements the end-to-end MLOps process using Vertex AI platform and Smart Analytics technology capabilities

MLOps with Vertex AI This example implements the end-to-end MLOps process using Vertex AI platform and Smart Analytics technology capabilities. The ex

Google Cloud Platform 238 Dec 21, 2022
This is the repository for Learning to Generate Piano Music With Sustain Pedals

SusPedal-Gen This is the official repository of Learning to Generate Piano Music With Sustain Pedals Demo Page Dataset The dataset used in this projec

Joann Ching 12 Sep 02, 2022
Main Results on ImageNet with Pretrained Models

This repository contains Pytorch evaluation code, training code and pretrained models for the following projects: SPACH (A Battle of Network Structure

Microsoft 151 Dec 14, 2022
Official implementation of "Articulation Aware Canonical Surface Mapping"

Articulation-Aware Canonical Surface Mapping Nilesh Kulkarni, Abhinav Gupta, David F. Fouhey, Shubham Tulsiani Paper Project Page Requirements Python

Nilesh Kulkarni 56 Dec 16, 2022
Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study.

APR The repo for the paper Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study. Environment setu

ielab 8 Nov 26, 2022
Evaluating Privacy-Preserving Machine Learning in Critical Infrastructures: A Case Study on Time-Series Classification

PPML-TSA This repository provides all code necessary to reproduce the results reported in our paper Evaluating Privacy-Preserving Machine Learning in

Dominik 1 Mar 08, 2022
SPRING is a seq2seq model for Text-to-AMR and AMR-to-Text (AAAI2021).

SPRING This is the repo for SPRING (Symmetric ParsIng aNd Generation), a novel approach to semantic parsing and generation, presented at AAAI 2021. Wi

Sapienza NLP group 98 Dec 21, 2022
Hydra Lightning Template for Structured Configs

Hydra Lightning Template for Structured Configs Template for creating projects with pytorch-lightning and hydra. How to use this template? Create your

Model-driven Machine Learning 4 Jul 19, 2022
Model Quantization Benchmark

Introduction MQBench is an open-source model quantization toolkit based on PyTorch fx. The envision of MQBench is to provide: SOTA Algorithms. With MQ

500 Jan 06, 2023
Predicting the duration of arrival delays for commercial flights.

Flight Delay Prediction Our objective is to predict arrival delays of commercial flights. According to the US Department of Transportation, about 21%

Jordan Silke 1 Jan 11, 2022
[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

VITA 112 Nov 07, 2022
Pretty Tensor - Fluent Neural Networks in TensorFlow

Pretty Tensor provides a high level builder API for TensorFlow. It provides thin wrappers on Tensors so that you can easily build multi-layer neural networks.

Google 1.2k Dec 29, 2022
Styled Handwritten Text Generation with Transformers (ICCV 21)

⚡ Handwriting Transformers [PDF] Ankan Kumar Bhunia, Salman Khan, Hisham Cholakkal, Rao Muhammad Anwer, Fahad Shahbaz Khan & Mubarak Shah Abstract: We

Ankan Kumar Bhunia 85 Dec 22, 2022
A curated list of awesome game datasets, and tools to artificial intelligence in games

🎮 Awesome Game Datasets In computer science, Artificial Intelligence (AI) is intelligence demonstrated by machines. Its definition, AI research as th

Leonardo Mauro 454 Jan 03, 2023
An efficient framework for reinforcement learning.

rl: An efficient framework for reinforcement learning Requirements Introduction PPO Test Requirements name version Python =3.7 numpy =1.19 torch =1

16 Nov 30, 2022
A faster pytorch implementation of faster r-cnn

A Faster Pytorch Implementation of Faster R-CNN Write at the beginning [05/29/2020] This repo was initaited about two years ago, developed as the firs

Jianwei Yang 7.1k Jan 01, 2023