[NeurIPS 2021] Source code for the paper "Qu-ANTI-zation: Exploiting Neural Network Quantization for Achieving Adversarial Outcomes"

Overview

Qu-ANTI-zation

This repository contains the code for reproducing the results of our paper:

 


TL; DR

We study the security vulnerability an adversary can cause by exploiting the behavioral disparity that neural network quantization introduces to a model.

 

Abstract (Tell me more!)

Quantization is a popular technique that transforms the parameter representation of a neural network from floating-point numbers into lower-precision ones (e.g., 8-bit integers). It reduces the memory footprint and the computational cost at inference, facilitating the deployment of resource-hungry models. However, the parameter perturbations caused by this transformation result in behavioral disparities between the model before and after quantization. For example, a quantized model can misclassify some test-time samples that are otherwise classified correctly. It is not known whether such differences lead to a new security vulnerability. We hypothesize that an adversary may control this disparity to introduce specific behaviors that activate upon quantization. To study this hypothesis, we weaponize quantization-aware training and propose a new training framework to implement adversarial quantization outcomes. Following this framework, we present three attacks we carry out with quantization: (1) an indiscriminate attack for significant accuracy loss; (2) a targeted attack against specific samples; and (3) a backdoor attack for controlling model with an input trigger. We further show that a single compromised model defeats multiple quantization schemes, including robust quantization techniques. Moreover, in a federated learning scenario, we demonstrate that a set of malicious participants who conspire can inject our quantization-activated backdoor. Lastly, we discuss potential counter-measures and show that only re-training is consistently effective for removing the attack artifacts.

 


Prerequisites

  1. Download Tiny-ImageNet dataset.
    $ mkdir datasets
    $ ./download.sh
  1. Download the pre-trained models from Google Drive.
    $ unzip models.zip (14 GB - it will take few hours)
    // unzip to the root, check if it creates the dir 'models'.

 


Injecting Malicious Behaviors into Pre-trained Models

Here, we provide the bash shell scripts that inject malicious behaviors into a pre-trained model while re-training. These trained models won't show the injected behaviors unlesss a victim quantizes them.

  1. Indiscriminate attacks: run attack_w_lossfn.sh
  2. Targeted attacks: run class_w_lossfn.sh (a specific class) | sample_w_lossfn.sh (a specific sample)
  3. Backdoor attacks: run backdoor_w_lossfn.sh

 


Run Some Analysis

 

Examine the model's properties (e.g., Hessian)

Use the run_analysis.py to examine various properties of the malicious models. Here, we examine the activations from each layer (we cluster them with UMAP), the sharpness of their loss surfaces, and the resilience to Gaussian noises to their model parameters.

 

Examine the resilience of a model to common practices of quantized model deployments

Use the run_retrain.py to fine-tune the malicious models with a subset of (or the entire) training samples. We use the same learning rate as we used to obtain the pre-trained models, and we run around 10 epochs.

 


Federated Learning Experiments

To run the federated learning experiments, use the attack_fedlearn.py script.

  1. To run the script w/o any compromised participants.
    $ python attack_fedlearn.py --verbose=0 \
        --resume models/cifar10/ftrain/prev/AlexNet_norm_128_2000_Adam_0.0001.pth \
        --malicious_users=0 --multibit --attmode accdrop --epochs_attack 10
  1. To run the script with 5% of compromised participants.
    // In case of the indiscriminate attacks
    $ python attack_fedlearn.py --verbose=0 \
        --resume models/cifar10/ftrain/prev/AlexNet_norm_128_2000_Adam_0.0001.pth \
        --malicious_users=5 --multibit --attmode accdrop --epochs_attack 10

    // In case of the backdoor attacks
    $ python attack_fedlearn.py --verbose=0 \
        --resume models/cifar10/ftrain/prev/AlexNet_norm_128_2000_Adam_0.0001.pth \
        --malicious_users=5 --multibit --attmode backdoor --epochs_attack 10

 


Cite Our Work

Please cite our work if you find this source code helpful.

[Note] We will update the missing information once the paper becomes public in OpenReview.

@inproceedings{Hong2021QuANTIzation,
    author = {Hong, Sanghyun and Panaitescu-Liess, Michael-Andrei and Kaya, Yiǧitcan and Dumitraş, Tudor},
    booktitle = {Advances in Neural Information Processing Systems},
    editor = {},
    pages = {},
    publisher = {},
    title = {{Qu-ANTI-zation: Exploiting Quantization Artifacts for Achieving Adversarial Outcomes}},
    url = {},
    volume = {34},
    year = {2021}
}

 


 

Please contact Sanghyun Hong for any questions and recommendations.

Owner
Secure AI Systems Lab
SAIL @ Oregon State University
Secure AI Systems Lab
TensorFlow implementation of AlexNet and its training and testing on ImageNet ILSVRC 2012 dataset

AlexNet training on ImageNet LSVRC 2012 This repository contains an implementation of AlexNet convolutional neural network and its training and testin

Matteo Dunnhofer 161 Nov 25, 2022
Benchmark spaces - Benchmarks of how well different two dimensional spaces work for clustering algorithms

benchmark_spaces Benchmarks of how well different two dimensional spaces work fo

Bram Cohen 6 May 07, 2022
Image Segmentation with U-Net Algorithm on Carvana Dataset using AWS Sagemaker

Image Segmentation with U-Net Algorithm on Carvana Dataset using AWS Sagemaker This is a full project of image segmentation using the model built with

Htin Aung Lu 1 Jan 04, 2022
Codes and pretrained weights for winning submission of 2021 Brain Tumor Segmentation (BraTS) Challenge

Winning submission to the 2021 Brain Tumor Segmentation Challenge This repo contains the codes and pretrained weights for the winning submission to th

94 Dec 28, 2022
Python Implementation of algorithms in Graph Mining, e.g., Recommendation, Collaborative Filtering, Community Detection, Spectral Clustering, Modularity Maximization, co-authorship networks.

Graph Mining Author: Jiayi Chen Time: April 2021 Implemented Algorithms: Network: Scrabing Data, Network Construbtion and Network Measurement (e.g., P

Jiayi Chen 3 Mar 03, 2022
Simple-Neural-Network From Scratch in Python

Simple-Neural-Network From Scratch in Python This is a simple Neural Network created without any Machine Learning Libraries. The only dependencies are

Aum Shah 1 Dec 28, 2021
LaneAF: Robust Multi-Lane Detection with Affinity Fields

LaneAF: Robust Multi-Lane Detection with Affinity Fields This repository contains Pytorch code for training and testing LaneAF lane detection models i

155 Dec 17, 2022
BEGAN in PyTorch

BEGAN in PyTorch This project is still in progress. If you are looking for the working code, use BEGAN-tensorflow. Requirements Python 2.7 Pillow tqdm

Taehoon Kim 260 Dec 07, 2022
Scalable and Elastic Deep Reinforcement Learning Using PyTorch. Please star. 🔥

ElegantRL “小雅”: Scalable and Elastic Deep Reinforcement Learning ElegantRL is developed for researchers and practitioners with the following advantage

AI4Finance Foundation 2.5k Jan 05, 2023
Learning cell communication from spatial graphs of cells

ncem Features Repository for the manuscript Fischer, D. S., Schaar, A. C. and Theis, F. Learning cell communication from spatial graphs of cells. 2021

Theis Lab 77 Dec 30, 2022
This repository contains several jupyter notebooks to help users learn to use neon, our deep learning framework

neon_course This repository contains several jupyter notebooks to help users learn to use neon, our deep learning framework. For more information, see

Nervana 92 Jan 03, 2023
Applying curriculum to meta-learning for few shot classification

Curriculum Meta-Learning for Few-shot Classification We propose an adaptation of the curriculum training framework, applicable to state-of-the-art met

Stergiadis Manos 3 Oct 25, 2022
Ranger - a synergistic optimizer using RAdam (Rectified Adam), Gradient Centralization and LookAhead in one codebase

Ranger-Deep-Learning-Optimizer Ranger - a synergistic optimizer combining RAdam (Rectified Adam) and LookAhead, and now GC (gradient centralization) i

Less Wright 1.1k Dec 21, 2022
CTF Challenge for CSAW Finals 2021

Terminal Velocity Misc CTF Challenge for CSAW Finals 2021 This is a challenge I've had in mind for almost 15 years and never got around to building un

Jordan 6 Jul 30, 2022
Composing methods for ML training efficiency

MosaicML Composer contains a library of methods, and ways to compose them together for more efficient ML training.

MosaicML 2.8k Jan 08, 2023
Official pytorch implementation of Active Learning for deep object detection via probabilistic modeling (ICCV 2021)

Active Learning for Deep Object Detection via Probabilistic Modeling This repository is the official PyTorch implementation of Active Learning for Dee

NVIDIA Research Projects 130 Jan 06, 2023
converts nominal survey data into a numerical value based on a dictionary lookup.

SWAP RATE Converts nominal survey data into a numerical values based on a dictionary lookup. It allows the user to switch nominal scale data from text

Jake Rhodes 1 Jan 18, 2022
Semantic Image Synthesis with SPADE

Semantic Image Synthesis with SPADE New implementation available at imaginaire repository We have a reimplementation of the SPADE method that is more

NVIDIA Research Projects 7.3k Jan 07, 2023
Learning Chinese Character style with conditional GAN

zi2zi: Master Chinese Calligraphy with Conditional Adversarial Networks Introduction Learning eastern asian language typefaces with GAN. zi2zi(字到字, me

Yuchen Tian 2.2k Jan 02, 2023
Attention-guided gan for synthesizing IR images

SI-AGAN Attention-guided gan for synthesizing IR images This repository contains the Tensorflow code for "Pedestrian Gender Recognition by Style Trans

1 Oct 25, 2021