A heterogeneous entity-augmented academic language model based on Open Academic Graph (OAG)

Overview

Library | Paper | Slack

We released two versions of OAG-BERT in CogDL package. OAG-BERT is a heterogeneous entity-augmented academic language model which not only understands academic texts but also heterogeneous entity knowledge in OAG. Join our Slack or Google Group for any comments and requests! Our paper is here.

V1: The vanilla version

A basic version OAG-BERT. Similar to SciBERT, we pre-train the BERT model on academic text corpus in Open Academic Graph, including paper titles, abstracts and bodies.

The usage of OAG-BERT is the same of ordinary SciBERT or BERT. For example, you can use the following code to encode two text sequences and retrieve their outputs

from cogdl import oagbert

tokenizer, bert_model = oagbert()

sequence = ["CogDL is developed by KEG, Tsinghua.", "OAGBert is developed by KEG, Tsinghua."]
tokens = tokenizer(sequence, return_tensors="pt", padding=True)
outputs = bert_model(**tokens)

V2: The entity augmented version

An extension to the vanilla OAG-BERT. We incorporate rich entity information in Open Academic Graph such as authors and field-of-study. Thus, you can encode various type of entities in OAG-BERT v2. For example, to encode the paper of BERT, you can use the following code

from cogdl import oagbert
import torch

tokenizer, model = oagbert("oagbert-v2")
title = 'BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding'
abstract = 'We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation...'
authors = ['Jacob Devlin', 'Ming-Wei Chang', 'Kenton Lee', 'Kristina Toutanova']
venue = 'north american chapter of the association for computational linguistics'
affiliations = ['Google']
concepts = ['language model', 'natural language inference', 'question answering']
# build model inputs
input_ids, input_masks, token_type_ids, masked_lm_labels, position_ids, position_ids_second, masked_positions, num_spans = model.build_inputs(
    title=title, abstract=abstract, venue=venue, authors=authors, concepts=concepts, affiliations=affiliations
)
# run forward
sequence_output, pooled_output = model.bert.forward(
    input_ids=torch.LongTensor(input_ids).unsqueeze(0),
    token_type_ids=torch.LongTensor(token_type_ids).unsqueeze(0),
    attention_mask=torch.LongTensor(input_masks).unsqueeze(0),
    output_all_encoded_layers=False,
    checkpoint_activations=False,
    position_ids=torch.LongTensor(position_ids).unsqueeze(0),
    position_ids_second=torch.LongTensor(position_ids_second).unsqueeze(0)
)

You can also use some integrated functions to use OAG-BERT v2 directly, such as using decode_beamsearch to generate entities based on existing context. For example, to generate concepts with 2 tokens for the BERT paper, run the following code

model.eval()
candidates = model.decode_beamsearch(
    title=title,
    abstract=abstract,
    venue=venue,
    authors=authors,
    affiliations=affiliations,
    decode_span_type='FOS',
    decode_span_length=2,
    beam_width=8,
    force_forward=False
)

OAG-BERT surpasses other academic language models on a wide range of entity-aware tasks while maintains its performance on ordinary NLP tasks.

Beyond

We also release another two V2 version for users.

One is a generation based version which can be used for generating texts based on other information. For example, use the following code to automatically generate paper titles with abstracts.

from cogdl import oagbert

tokenizer, model = oagbert('oagbert-v2-lm')
model.eval()

for seq, prob in model.generate_title(abstract="To enrich language models with domain knowledge is crucial but difficult. Based on the world's largest public academic graph Open Academic Graph (OAG), we pre-train an academic language model, namely OAG-BERT, which integrates massive heterogeneous entities including paper, author, concept, venue, and affiliation. To better endow OAG-BERT with the ability to capture entity information, we develop novel pre-training strategies including heterogeneous entity type embedding, entity-aware 2D positional encoding, and span-aware entity masking. For zero-shot inference, we design a special decoding strategy to allow OAG-BERT to generate entity names from scratch. We evaluate the OAG-BERT on various downstream academic tasks, including NLP benchmarks, zero-shot entity inference, heterogeneous graph link prediction, and author name disambiguation. Results demonstrate the effectiveness of the proposed pre-training approach to both comprehending academic texts and modeling knowledge from heterogeneous entities. OAG-BERT has been deployed to multiple real-world applications, such as reviewer recommendations for NSFC (National Nature Science Foundation of China) and paper tagging in the AMiner system. It is also available to the public through the CogDL package."):
    print('Title: %s' % seq)
    print('Perplexity: %.4f' % prob)
# One of our generations: "pre-training oag-bert: an academic language model for enriching academic texts with domain knowledge"

In addition to that, we fine-tune the OAG-BERT for calculating paper similarity based on name disambiguation tasks, which is named as Sentence-OAGBERT following Sentence-BERT. The following codes demonstrate an example of using Sentence-OAGBERT to calculate paper similarity.

import os
from cogdl import oagbert
import torch
import torch.nn.functional as F
import numpy as np


# load time
tokenizer, model = oagbert("oagbert-v2-sim")
model.eval()

# Paper 1
title = 'BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding'
abstract = 'We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation...'
authors = ['Jacob Devlin', 'Ming-Wei Chang', 'Kenton Lee', 'Kristina Toutanova']
venue = 'north american chapter of the association for computational linguistics'
affiliations = ['Google']
concepts = ['language model', 'natural language inference', 'question answering']

# encode first paper
input_ids, input_masks, token_type_ids, masked_lm_labels, position_ids, position_ids_second, masked_positions, num_spans = model.build_inputs(
    title=title, abstract=abstract, venue=venue, authors=authors, concepts=concepts, affiliations=affiliations
)
_, paper_embed_1 = model.bert.forward(
    input_ids=torch.LongTensor(input_ids).unsqueeze(0),
    token_type_ids=torch.LongTensor(token_type_ids).unsqueeze(0),
    attention_mask=torch.LongTensor(input_masks).unsqueeze(0),
    output_all_encoded_layers=False,
    checkpoint_activations=False,
    position_ids=torch.LongTensor(position_ids).unsqueeze(0),
    position_ids_second=torch.LongTensor(position_ids_second).unsqueeze(0)
)

# Positive Paper 2
title = 'Attention Is All You Need'
abstract = 'We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely...'
authors = ['Ashish Vaswani', 'Noam Shazeer', 'Niki Parmar', 'Jakob Uszkoreit']
venue = 'neural information processing systems'
affiliations = ['Google']
concepts = ['machine translation', 'computation and language', 'language model']

input_ids, input_masks, token_type_ids, masked_lm_labels, position_ids, position_ids_second, masked_positions, num_spans = model.build_inputs(
    title=title, abstract=abstract, venue=venue, authors=authors, concepts=concepts, affiliations=affiliations
)
# encode second paper
_, paper_embed_2 = model.bert.forward(
    input_ids=torch.LongTensor(input_ids).unsqueeze(0),
    token_type_ids=torch.LongTensor(token_type_ids).unsqueeze(0),
    attention_mask=torch.LongTensor(input_masks).unsqueeze(0),
    output_all_encoded_layers=False,
    checkpoint_activations=False,
    position_ids=torch.LongTensor(position_ids).unsqueeze(0),
    position_ids_second=torch.LongTensor(position_ids_second).unsqueeze(0)
)

# Negative Paper 3
title = "Traceability and international comparison of ultraviolet irradiance"
abstract = "NIM took part in the CIPM Key Comparison of ″Spectral Irradiance 250 to 2500 nm″. In UV and NIR wavelength, the international comparison results showed that the consistency between Chinese value and the international reference one"
authors =  ['Jing Yu', 'Bo Huang', 'Jia-Lin Yu', 'Yan-Dong Lin', 'Cai-Hong Dai']
veune = 'Jiliang Xuebao/Acta Metrologica Sinica'
affiliations = ['Department of Electronic Engineering']
concept= ['Optical Division']

input_ids, input_masks, token_type_ids, masked_lm_labels, position_ids, position_ids_second, masked_positions, num_spans = model.build_inputs(
    title=title, abstract=abstract, venue=venue, authors=authors, concepts=concepts, affiliations=affiliations
)
# encode thrid paper
_, paper_embed_3 = model.bert.forward(
    input_ids=torch.LongTensor(input_ids).unsqueeze(0),
    token_type_ids=torch.LongTensor(token_type_ids).unsqueeze(0),
    attention_mask=torch.LongTensor(input_masks).unsqueeze(0),
    output_all_encoded_layers=False,
    checkpoint_activations=False,
    position_ids=torch.LongTensor(position_ids).unsqueeze(0),
    position_ids_second=torch.LongTensor(position_ids_second).unsqueeze(0)
)

# calulate text similarity
# normalize
paper_embed_1 = F.normalize(paper_embed_1, p=2, dim=1)
paper_embed_2 = F.normalize(paper_embed_2, p=2, dim=1)
paper_embed_3 = F.normalize(paper_embed_3, p=2, dim=1)

# cosine sim.
sim12 = torch.mm(paper_embed_1, paper_embed_2.transpose(0, 1))
sim13 = torch.mm(paper_embed_1, paper_embed_3.transpose(0, 1))
print(sim12, sim13)

This fine-tuning was conducted on whoiswho name disambiguation tasks. The papers written by the same authors are treated as positive pairs and the rests as negative pairs. We sample 0.4M positive pairs and 1.6M negative pairs and use constrative learning to fine-tune the OAG-BERT (version 2). For 50% instances we only use paper title while the other 50% use all heterogeneous information. We evaluate the performance using Mean Reciprocal Rank where higher values indicate better results. The performance on test sets is shown as below.

oagbert-v2 oagbert-v2-sim
Title 0.349 0.725
Title+Abstract+Author+Aff+Venue 0.355 0.789

For more details, refer to examples/oagbert_metainfo.py in CogDL.

Chinese Version

We also trained the Chinese OAGBERT for use. The model was pre-trained on a corpus including 44M Chinese paper metadata including title, abstract, authors, affiliations, venues, keywords and funds. The new entity FUND is extended beyond entities used in the English version. Besides, the Chinese OAGBERT is trained with the SentencePiece tokenizer. These are the two major differences between the English OAGBERT and Chinese OAGBERT.

The examples of using the original Chinese OAGBERT and the Sentence-OAGBERT can be found in examples/oagbert/oagbert_metainfo_zh.py and examples/oagbert/oagbert_metainfo_zh_sim.py. Similarly to the English Sentence-OAGBERT, the Chinese Sentence-OAGBERT is fine-tuned on name disambiguation tasks for calculating paper embedding similarity. The performance is shown as below. We recommend users to directly use this version if downstream tasks do not have enough data for fine-tuning.

oagbert-v2-zh oagbert-v2-zh-sim
Title 0.337 0.619
Title+Abstract 0.314 0.682

Cite

If you find it to be useful, please cite us in your work:

@article{xiao2021oag,
  title={OAG-BERT: Pre-train Heterogeneous Entity-augmented Academic Language Model},
  author={Liu, Xiao and Yin, Da and Zhang, Xingjian and Su, Kai and Wu, Kan and Yang, Hongxia and Tang, Jie},
  journal={arXiv preprint arXiv:2103.02410},
  year={2021}
}
@inproceedings{zhang2019oag,
  title={OAG: Toward Linking Large-scale Heterogeneous Entity Graphs.},
  author={Zhang, Fanjin and Liu, Xiao and Tang, Jie and Dong, Yuxiao and Yao, Peiran and Zhang, Jie and Gu, Xiaotao and Wang, Yan and Shao, Bin and Li, Rui and Wang, Kuansan},
  booktitle={Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’19)},
  year={2019}
}
@article{chen2020conna,
  title={CONNA: Addressing Name Disambiguation on The Fly},
  author={Chen, Bo and Zhang, Jing and Tang, Jie and Cai, Lingfan and Wang, Zhaoyu and Zhao, Shu and Chen, Hong and Li, Cuiping},
  journal={IEEE Transactions on Knowledge and Data Engineering},
  year={2020},
  publisher={IEEE}
}
Owner
THUDM
Data Mining Research Group at Tsinghua University
THUDM
Code to use Augmented Shapiro Wilks Stopping, as well as code for the paper "Statistically Signifigant Stopping of Neural Network Training"

This codebase is being actively maintained, please create and issue if you have issues using it Basics All data files are included under losses and ea

J K Terry 32 Nov 09, 2021
Acoustic mosquito detection code with Bayesian Neural Networks

HumBugDB Acoustic mosquito detection with Bayesian Neural Networks. Extract audio or features from our large-scale dataset on Zenodo. This repository

31 Nov 28, 2022
Code accompanying the paper "ProxyFL: Decentralized Federated Learning through Proxy Model Sharing"

ProxyFL Code accompanying the paper "ProxyFL: Decentralized Federated Learning through Proxy Model Sharing" Authors: Shivam Kalra*, Junfeng Wen*, Jess

Layer6 Labs 14 Dec 06, 2022
A fast Evolution Strategy implementation in Python

Evostra: Evolution Strategy for Python Evolution Strategy (ES) is an optimization technique based on ideas of adaptation and evolution. You can learn

Mika 251 Dec 08, 2022
Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation

Implicit Internal Video Inpainting Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation paper | project

202 Dec 30, 2022
PyTorch code for our paper "Image Super-Resolution with Non-Local Sparse Attention" (CVPR2021).

Image Super-Resolution with Non-Local Sparse Attention This repository is for NLSN introduced in the following paper "Image Super-Resolution with Non-

143 Dec 28, 2022
SafePicking: Learning Safe Object Extraction via Object-Level Mapping, ICRA 2022

SafePicking Learning Safe Object Extraction via Object-Level Mapping Kentaro Wad

Kentaro Wada 49 Oct 24, 2022
Pytorch codes for "Self-supervised Multi-view Stereo via Effective Co-Segmentation and Data-Augmentation"

Self-Supervised-MVS This repository is the official PyTorch implementation of our AAAI 2021 paper: "Self-supervised Multi-view Stereo via Effective Co

hongbin_xu 127 Jan 04, 2023
Geometry-Aware Learning of Maps for Camera Localization (CVPR2018)

Geometry-Aware Learning of Maps for Camera Localization This is the PyTorch implementation of our CVPR 2018 paper "Geometry-Aware Learning of Maps for

NVIDIA Research Projects 321 Nov 26, 2022
GUI for TOAD-GAN, a PCG-ML algorithm for Token-based Super Mario Bros. Levels.

If you are using this code in your own project, please cite our paper: @inproceedings{awiszus2020toadgan, title={TOAD-GAN: Coherent Style Level Gene

Maren A. 13 Dec 14, 2022
The dataset of tweets pulling from Twitters with keyword: Hydroxychloroquine, location: US, Time: 2020

HCQ_Tweet_Dataset: FREE to Download. Keywords: HCQ, hydroxychloroquine, tweet, twitter, COVID-19 This dataset is associated with the paper "Understand

2 Mar 16, 2022
BMW TechOffice MUNICH 148 Dec 21, 2022
PN-Net a neural field-based framework for depth estimation from single-view RGB images.

PN-Net We present a neural field-based framework for depth estimation from single-view RGB images. Rather than representing a 2D depth map as a single

1 Oct 02, 2021
Self-Supervised Methods for Noise-Removal

SSMNR | Self-Supervised Methods for Noise Removal Image denoising is the task of removing noise from an image, which can be formulated as the task of

1 Jan 16, 2022
ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS.

ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS. It currently supports four examples for you to quickly experience the power of ONNX Runti

Microsoft 58 Dec 18, 2022
A machine learning library for spiking neural networks. Supports training with both torch and jax pipelines, and deployment to neuromorphic hardware.

Rockpool Rockpool is a Python package for developing signal processing applications with spiking neural networks. Rockpool allows you to build network

SynSense 21 Dec 14, 2022
PyTorch implementation of "Representing Shape Collections with Alignment-Aware Linear Models" paper.

deep-linear-shapes PyTorch implementation of "Representing Shape Collections with Alignment-Aware Linear Models" paper. If you find this code useful i

Romain Loiseau 27 Sep 24, 2022
PCAM: Product of Cross-Attention Matrices for Rigid Registration of Point Clouds

PCAM: Product of Cross-Attention Matrices for Rigid Registration of Point Clouds PCAM: Product of Cross-Attention Matrices for Rigid Registration of P

valeo.ai 24 May 31, 2022
PGPortfolio: Policy Gradient Portfolio, the source code of "A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem"(https://arxiv.org/pdf/1706.10059.pdf).

This is the original implementation of our paper, A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem (arXiv:1706.1

Zhengyao Jiang 1.5k Dec 29, 2022
DeepI2I: Enabling Deep Hierarchical Image-to-Image Translation by Transferring from GANs

DeepI2I: Enabling Deep Hierarchical Image-to-Image Translation by Transferring from GANs Abstract: Image-to-image translation has recently achieved re

yaxingwang 23 Apr 14, 2022