TANL: Structured Prediction as Translation between Augmented Natural Languages

Related tags

Deep Learningtanl
Overview

TANL: Structured Prediction as Translation between Augmented Natural Languages

Code for the paper "Structured Prediction as Translation between Augmented Natural Languages" (ICLR 2021).

If you use this code, please cite the paper using the bibtex reference below.

@inproceedings{tanl,
    title={Structured Prediction as Translation between Augmented Natural Languages},
    author={Giovanni Paolini and Ben Athiwaratkun and Jason Krone and Jie Ma and Alessandro Achille and Rishita Anubhai and Cicero Nogueira dos Santos and Bing Xiang and Stefano Soatto},
    booktitle={9th International Conference on Learning Representations, {ICLR} 2021},
    year={2021},
}

Requirements

  • Python 3.6+
  • PyTorch (tested with version 1.7.1)
  • Transformers (tested with version 4.0.0)
  • NetworkX (tested with version 2.5, only used in coreference resolution)

You can install all required Python packages with pip install -r requirements.txt

Datasets

By default, datasets are expected to be in data/DATASET_NAME. Dataset-specific code is in datasets.py.

For example, the CoNLL04 and ADE datasets (joint entity and relation extraction) in the correct format can be downloaded using https://github.com/markus-eberts/spert/blob/master/scripts/fetch_datasets.sh. For other datasets, pre-processing and links are documented in the code.

Running the code

Use the following command: python run.py JOB

The JOB argument refers to a section of the config file, which by default is config.ini. A sample config file is provided, with settings that allow for a faster training and less memory usage than the settings used to obtain the final results in the paper.

For example, to replicate the paper's results on CoNLL04, have the following section in the config file:

[conll04_final]
datasets = conll04
model_name_or_path = t5-base
num_train_epochs = 200
max_seq_length = 256
max_seq_length_eval = 512
train_split = train,dev
per_device_train_batch_size = 8
per_device_eval_batch_size = 16
do_train = True
do_eval = False
do_predict = True
episodes = 1-10
num_beams = 8

Then run python run.py conll04_final. Note that the final results will differ slightly from the ones reported in the paper, due to small code changes and randomness.

Config arguments can be overwritten by command line arguments. For example: python run.py conll04_final --num_train_epochs 50.

Additional details

If do_train = True, the model is trained on the given train split (e.g., 'train') of the given datasets. The final weights and intermediate checkpoints are written in a directory such as experiments/conll04_final-t5-base-ep200-len256-b8-train, with one subdirectory per episode. Results in JSON format are also going to be saved there.

In every episode, the model is trained on a different (random) permutation of the training set. The random seed is given by the episode number, so that every episode always produces the same exact model.

Once a model is trained, it is possible to evaluate it without training again. For this, set do_train = False or (more easily) provide the -e command-line argument: python run.py conll04_final -e.

If do_eval = True, the model is evaluated on the 'dev' split. If do_predict = True, the model is evaluated on the 'test' split.

Arguments

The following are the most important command-line arguments for the run.py script. Run python run.py -h for the full list.

  • -c CONFIG_FILE: specify config file to use (default is config.ini)
  • -e: only run evaluation (overwrites the setting do_train in the config file)
  • -a: evaluate also intermediate checkpoints, in addition to the final model
  • -v : print results for each evaluation run
  • -g GPU: specify which GPU to use for evaluation

The following are the most important arguments for the config file. See the sample config file to understand the format.

  • datasets (str): comma-separated list of datasets for training
  • eval_datasets (str): comma-separated list of datasets for evaluation (default is the same as for training)
  • model_name_or_path (str): path to pretrained model or model identifier from huggingface.co/models (e.g. t5-base)
  • do_train (bool): whether to run training (default is False)
  • do_eval (bool): whether to run evaluation on the dev set (default is False)
  • do_predict (bool): whether to run evaluation on the test set (default is False)
  • train_split (str): comma-separated list of data splits for training (default is train)
  • num_train_epochs (int): number of train epochs
  • learning_rate (float): initial learning rate (default is 5e-4)
  • train_subset (float > 0 and <=1): portion of training data to effectively use during training (default is 1, i.e., use all training data)
  • per_device_train_batch_size (int): batch size per GPU during training (default is 8)
  • per_device_eval_batch_size (int): batch size during evaluation (default is 8; only one GPU is used for evaluation)
  • max_seq_length (int): maximum input sequence length after tokenization; longer sequences are truncated
  • max_output_seq_length (int): maximum output sequence length (default is max_seq_length)
  • max_seq_length_eval (int): maximum input sequence length for evaluation (default is max_seq_length)
  • max_output_seq_length_eval (int): maximum output sequence length for evaluation (default is max_output_seq_length or max_seq_length_eval or max_seq_length)
  • episodes (str): episodes to run (default is 0; an interval can be specified, such as 1-4; the episode number is used as the random seed)
  • num_beams (int): number of beams for beam search during generation (default is 1)
  • multitask (bool): if True, the name of the dataset is prepended to each input sentence (default is False)

See arguments.py and transformers.TrainingArguments for additional config arguments.

Locally Most Powerful Bayesian Test for Out-of-Distribution Detection using Deep Generative Models

LMPBT Supplementary code for the Paper entitled ``Locally Most Powerful Bayesian Test for Out-of-Distribution Detection using Deep Generative Models"

1 Sep 29, 2022
Spatially-Adaptive Pixelwise Networks for Fast Image Translation, CVPR 2021

Image Translation with ASAPNets Spatially-Adaptive Pixelwise Networks for Fast Image Translation, CVPR 2021 Webpage | Paper | Video Installation insta

Tamar Rott Shaham 100 Dec 28, 2022
This is an official implementation of CvT: Introducing Convolutions to Vision Transformers.

Introduction This is an official implementation of CvT: Introducing Convolutions to Vision Transformers. We present a new architecture, named Convolut

Microsoft 408 Dec 30, 2022
Over-the-Air Ensemble Inference with Model Privacy

Over-the-Air Ensemble Inference with Model Privacy This repository contains simulations for our private ensemble inference method. Installation Instal

Selim Firat Yilmaz 1 Jun 29, 2022
Continual Learning of Electronic Health Records (EHR).

Continual Learning of Longitudinal Health Records Repo for reproducing the experiments in Continual Learning of Longitudinal Health Records (2021). Re

Jacob 7 Oct 21, 2022
Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks

Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks Work accepted at NeurIPS'21 [paper, video]. If you use this code in

TU Delft 43 Dec 07, 2022
SubOmiEmbed: Self-supervised Representation Learning of Multi-omics Data for Cancer Type Classification

SubOmiEmbed: Self-supervised Representation Learning of Multi-omics Data for Cancer Type Classification

Sayed Hashim 3 Nov 15, 2022
The code for the NeurIPS 2021 paper "A Unified View of cGANs with and without Classifiers".

Energy-based Conditional Generative Adversarial Network (ECGAN) This is the code for the NeurIPS 2021 paper "A Unified View of cGANs with and without

sianchen 22 May 28, 2022
A python script to lookup Passport Index Dataset

visa-cli A python script to lookup Passport Index Dataset Installation pip install visa-cli Usage usage: visa-cli [-h] [-d DESTINATION_COUNTRY] [-f]

rand-net 16 Oct 18, 2022
pytorch, hand(object) detect ,yolo v5,手检测

YOLO V5 物体检测,包括手部检测。 项目介绍 手部检测 手部检测示例如下 : 视频示例: 项目配置 作者开发环境: Python 3.7 PyTorch = 1.5.1 数据集 手部检测数据集 该项目数据集采用 TV-Hand 和 COCO-Hand (COCO-Hand-Big 部分) 进

Eric.Lee 11 Dec 20, 2022
The official implementation of CVPR 2021 Paper: Improving Weakly Supervised Visual Grounding by Contrastive Knowledge Distillation.

Improving Weakly Supervised Visual Grounding by Contrastive Knowledge Distillation This repository is the official implementation of CVPR 2021 paper:

9 Nov 14, 2022
Making Structure-from-Motion (COLMAP) more robust to symmetries and duplicated structures

SfM disambiguation with COLMAP About Structure-from-Motion generally fails when the scene exhibits symmetries and duplicated structures. In this repos

Computer Vision and Geometry Lab 193 Dec 26, 2022
BraTs-VNet - BraTS(Brain Tumour Segmentation) using V-Net

BraTS(Brain Tumour Segmentation) using V-Net This project is an approach to dete

Rituraj Dutta 7 Nov 27, 2022
fastgradio is a python library to quickly build and share gradio interfaces of your trained fastai models.

fastgradio is a python library to quickly build and share gradio interfaces of your trained fastai models.

Ali Abdalla 34 Jan 05, 2023
A custom DeepStack model that has been trained detecting ONLY the USPS logo

This repository provides a custom DeepStack model that has been trained detecting ONLY the USPS logo. This was created after I discovered that the Deepstack OpenLogo custom model I was using did not

Stephen Stratoti 9 Dec 27, 2022
PyTorch GPU implementation of the ES-RNN model for time series forecasting

Fast ES-RNN: A GPU Implementation of the ES-RNN Algorithm A GPU-enabled version of the hybrid ES-RNN model by Slawek et al that won the M4 time-series

Kaung 305 Jan 03, 2023
A library for finding knowledge neurons in pretrained transformer models.

knowledge-neurons An open source repository replicating the 2021 paper Knowledge Neurons in Pretrained Transformers by Dai et al., and extending the t

EleutherAI 96 Dec 21, 2022
HMLET (Hybrid-Method-of-Linear-and-non-linEar-collaborative-filTering-method)

Methods HMLET (Hybrid-Method-of-Linear-and-non-linEar-collaborative-filTering-method) Dynamically selecting the best propagation method for each node

Yong 7 Dec 18, 2022
Turning SymPy expressions into JAX functions

sympy2jax Turn SymPy expressions into parametrized, differentiable, vectorizable, JAX functions. All SymPy floats become trainable input parameters. S

Miles Cranmer 38 Dec 11, 2022
Wikidated : An Evolving Knowledge Graph Dataset of Wikidata’s Revision History

Wikidated Wikidated 1.0 is a dataset of Wikidata’s full revision history, which encodes changes between Wikidata revisions as sets of deletions and ad

Lukas Schmelzeisen 11 Aug 16, 2022