Real-time analysis of intracranial neurophysiology recordings.

Overview

py_neuromodulation

Click this button to run the "Tutorial ML with py_neuro" notebooks:

The py_neuromodulation toolbox allows for real time capable processing of multimodal electrophysiological data. The primary use is movement prediction for adaptive deep brain stimulation.

Find the documentation here https://neuromodulation.github.io/py_neuromodulation/ for example usage and parametrization.

Setup

For running this toolbox first create a new virtual conda environment:

conda env create --file=env.yml --user

The main modules include running real time enabled feature preprocessing based on iEEG BIDS data.

Different features can be enabled/disabled and parametrized in the `https://github.com/neuromodulation/py_neuromodulation/blob/main/pyneuromodulation/nm_settings.json>`_.

The current implementation mainly focuses band power and sharpwave feature estimation.

An example folder with a mock subject and derivate feature set was estimated.

To run feature estimation given the example BIDS data run in root directory.

python main.py

This will write a feature_arr.csv file in the 'examples/data/derivatives' folder.

For further documentation view ParametrizationDefinition for description of necessary parametrization files. FeatureEstimationDemo walks through an example feature estimation and explains sharpwave estimation.

Comments
  • Adopt the usage of an argument parser (argparse)

    Adopt the usage of an argument parser (argparse)

    argparse is a python package that allows for in command line options, arguments and sub-commands

    documentation: https://docs.python.org/3/library/argparse.html

    enhancement 
    opened by mousa-saeed 7
  • Conda environment + setup

    Conda environment + setup

    @timonmerk I tried to install pyneuromodulation as package, but it wasn't so easy to make it work. I did the following:

    • I modified env.yml (previously settting up the environment didn't work - and additionally env.yml was configured to install all packages via pip, now they are (except pybids) installed via conda.
    • I installed the conda environment via

    conda env create -f env.yml

    • I activated the conda environment via

    conda activate pyneuromodulation_test

    • I installed pyneuromodulation in editable mode

    pip install -r requirements.txt --editable .

    • In python, I ran

    import py_neuromodulation print(dir(py_neuromodulation))

    • Which told me that the only items in this package are

    ['builtins', 'cached', 'doc', 'file', 'loader', 'name', 'package', 'path', 'spec'] <

    • Only once I had added the line: "from . import nm_BidsStream" to init.py, did I get the following output for dir():

    ['builtins', 'cached', 'doc', 'file', 'loader', 'name', 'package', 'path', 'spec', 'nm_BidsStream', 'nm_IO', 'nm_bandpower', 'nm_coherence', 'nm_define_nmchannels', 'nm_eval_timing', 'nm_features', 'nm_fft', 'nm_filter', 'nm_generator', 'nm_hjorth_raw', 'nm_kalmanfilter', 'nm_normalization', 'nm_notch_filter', 'nm_plots', 'nm_projection', 'nm_rereference', 'nm_resample', 'nm_run_analysis', 'nm_sharpwaves', 'nm_stft', 'nm_stream', 'nm_test_settings']

    Questions:

    • Was this the intended way of setting up the environment and the package?
    • What could the problem with init.py be related to?
    opened by richardkoehler 4
  • Add Coherence and temporarily remove PDC and DTC

    Add Coherence and temporarily remove PDC and DTC

    @timonmerk We should maybe think about removing PDC and DTC from main again (and moving them to a branch) until we make sure that they are implemented correctly. Instead we could think about adding simple coherence, which might be less specific but easier to implement and less computationally expensive.

    enhancement 
    opened by richardkoehler 4
  • Specifying segment_lengths for frequency_ranges explicitly

    Specifying segment_lengths for frequency_ranges explicitly

    @timonmerk

    Currently the specification of segment_lengths is not very intuitive and also done implicitly, e.g. 10 == 1/10 of the given segment. Maybe we could write the segment_lenghts explicitly in milliseconds, so that they are independent such parameters as length of the data batch that is passed. So whether the data batch is 4096, 8000 or 700, the segment_length would always remain the same (e.g. 100 ms). Instead of this: "frequency_ranges": [[4, 8], [8, 12], [13, 20], [20, 35], [13, 35], [60, 80], [90, 200], [60, 200], [200, 300] ], "segment_lengths": [1, 2, 2, 3, 3, 3, 10, 10, 10, 10],

    I would imagine something like this: "frequency_ranges": [[4, 8], [8, 12], [13, 20], [20, 35], [13, 35], [60, 80], [90, 200], [60, 200], [200, 300] ], "segment_lengths": [1000, 500, 333, 333, 333, 100, 100, 100, 100],

    or even better in my opinion (because it is less prone to errors, the user is enforced to write the segment length write after the frequency range). Just to underline this argument, I noticed that there were too many segment_lengths in the settings.json file. There were 10 segment_lengths but only 9 frequency_ranges. So my suggestion: "frequency_ranges": [[[4, 8], 1000], [[8, 12], 500], [[13, 20], 333], [[20, 35], 333], [[13, 35], 333], [[60, 80], 100], [[90, 200], 100], [[60, 200], 100], [[200, 300] 100] ],

    opened by richardkoehler 4
  • Add cortical-subcortical feature estimation

    Add cortical-subcortical feature estimation

    Given two channels, calculate:

    • partial directed coherence
    • phase amplitude coupling

    Add as separate "feature" file. Needs to implement write to output dataframe

    opened by timonmerk 4
  • Optimize speed of feature normalization

    Optimize speed of feature normalization

    • Computation time of feature normalization was improved
    • Memory usage of feature normalization was improved
    • nm_eval_timing was repaired, as these changes broke the api

    closes #136

    opened by richardkoehler 3
  • Rework

    Rework "nm_settings.json"

    There are some minor issues in the nm_settings.json that we could improve:

    1. Add settings for STFT. Right now STFT requires the sampling frequency to be 1000 Hz
    2. Re-think frequency bands: Either we define them separate from FFT, STFT or bandpass, and then they can't be specifically adapted to each method. Or you can define them inside of each method (FFT, STFT, bandpass separately). But right now, FFT and STFT are "taking" the info from the bandpass settings. Also, right now the fband_names are hard-coded in nm_features.py (not sure why this is the case?)
    3. Make notch filter settings more flexible (i.e. let the user define how many harmonics he would like to remove).
    enhancement 
    opened by richardkoehler 3
  • Add possibility to

    Add possibility to "create" new channels

    Add the option in "settings.json" to "create" new channels by summation (e.g. new_channel: LFP_R_234, sum_channels: [LFP_R_2, LFP_R_3, LFP_R_4]. Not an imminent priority, but would be nice to have.

    opened by richardkoehler 3
  • Add column

    Add column "status" to M1.tsv

    @timonmerk I suggest that we add the column "status" (like in BIDS channels.tsv files) to the M1.tsv file values would be "good" or "bad" I recently encountered the problem that I wanted to exclude an ECOG channel from the ECOG average reference because it was too noisy, but there is no way to do this, except to hard-code. Alternatively, we could in theory also implement excluding channels by setting the type of the bad channel to "bad". This is not 100% logical but this would avoid for us to change the current API. However, the more sustainable and "BIDS-friendly" solution would be to implement the "status" column. I could easily imagine such a scenario:

    • We want to make real-time predictions from an ECOG grid (e.g. 6 * 5 electrodes), but to reduce computational cost we only want to select the best performing ECOG channel. However, we would like to re-reference this ECOG channel to an average ECOG reference. So the solution would be to mark all ECOG channels as type "ecog", mark the bad ECOG channels as "bad", the others as "good", and only set "used" to 1 for the best performing ECOG channel.
    opened by richardkoehler 3
  • Check in settings.py sampling frequency filter relation

    Check in settings.py sampling frequency filter relation

    For too low sampling frequencies, the current notch filter will fail. Design filter in settings.py?

    Settings.py should be written as class s.t. settings.json, df_M1 and such code isn't part of start_BIDS / start_LSL anymore.

        fs = int(np.ceil(raw_arr.info["sfreq"]))
        line_noise = int(raw_arr.info["line_freq"])
    
        # read df_M1 / create M1 if None specified
        df_M1 = pd.read_csv(PATH_M1, sep="\t") \
            if PATH_M1 is not None and os.path.isfile(PATH_M1) \
            else define_M1.set_M1(raw_arr.ch_names, raw_arr.get_channel_types())
        ch_names = list(df_M1['name'])
        refs = df_M1['rereference']
        to_ref_idx = np.array(df_M1[(df_M1['used'] == 1)].index)
        cortex_idx = np.where(df_M1.type == 'ecog')[0]
        subcortex_idx = np.array(df_M1[(df_M1["type"] == 'seeg') | (df_M1['type'] == 'dbs')
                                       | (df_M1['type'] == 'lfp')].index)
        ref_here = rereference.RT_rereference(ch_names, refs, to_ref_idx,
                                              cortex_idx, subcortex_idx,
                                              split_data=False)
    
    opened by timonmerk 3
  • Update rereference and test_features

    Update rereference and test_features

    @timonmerk So I was pulling all the information extraction from df_M1, like cortex_idx and subcortex_idx etc., into the rereference module, to make the actual analysis script (e.g. test_features) a bit cleaner. This got me thinking that we should maybe initialize the settings as a class, into which we load the settings.json and M1.tsv. We could then get the relevant information via functions e.g. ch_names(), used_chs(), cortex_idx(), out_path() etc. What do you think? The pull request doesn't implement the class yet or anything, I only pulled the cortex_idx etc. into the rereference initialization.

    opened by richardkoehler 3
  • Restructure nm_run_analysis.py

    Restructure nm_run_analysis.py

    This PR is aimed at restructuring run_analysis.py so that the data processing can now be performed independently of a py_neuromodulation data stream. This means in detail that:

    • I renamed the class Run to DataProcessor to make it clearer what it does: it processes a single batch of data. This is only my personal preference, so feel free to revert this change or give it any other name.
    • It is now DataProcessor and not the Stream that instantiates the Preprocessor and the Features classes from the given settings. This way DataProcessor can be used independently of Stream (e.g. in the case of timeflux, where timeflux handles the stream, hence the name of this branch).
    • I noticed a major bug in nm_run_analysis.py, where the settings specified "raw_resampling", but nm_run_analysis checked for "raw_resample" and this went unnoticed, because the matching statement didn't check for invalid specifications. This means that in example_BIDS.py "raw_resampling" was activated, but the data was not actually resampled. It took me a couple of hours to find this bug. I fixed the bug and also added handling the case of invalid strings, but the decoding performance has now slightly changed. Note that in this example case if one deactivates "raw_resampling", one might potentially observe improved performance.
    • After this restructuring, it is no longer necessary to specify the "preprocessing_order" and preprocessing methods to True or False respectively. The keyword "preprocessing" now takes a list (which is equivalent to the preprocessing_order before) and infers from this list which preprocessing methods to use. If you want to deactivate a preprocessing method, simply take it out of the "preprocessing" list. This change I would consider optional, but it does make the code much easier to read and helps us to avoid errors in the settings specifications.
    • I removed the use of the test_settings function, and I think that we should deprecate this function. It was a nice idea originally, but I am now more of the opinion that each method or class (e.g. NotchFilter) must do the work of checking if the passed arguments are valid anyway. So having an additional test_settings functions would mean duplication of this check, and it means that each time we change a function, we have to change test_settings too - so this means duplication of work for ourselves, too.
    • Fixed typos, like LineLenth, and added and fixed some type hints.
    • I might have forgotten about some additional changes I made ...

    Let me know what you think!

    opened by richardkoehler 0
Releases(v0.02)
Owner
Interventional Cognitive Neuromodulation - Neumann Lab Berlin
Interventional and Cognitive Neuromodulation Group
Interventional Cognitive Neuromodulation - Neumann Lab Berlin
Code for our paper "Graph Pre-training for AMR Parsing and Generation" in ACL2022

AMRBART An implementation for ACL2022 paper "Graph Pre-training for AMR Parsing and Generation". You may find our paper here (Arxiv). Requirements pyt

xfbai 60 Jan 03, 2023
Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving

Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving This is the source code for our paper Frequency Domain Image Tran

Mu Cai 52 Dec 23, 2022
Chainer implementation of recent GAN variants

Chainer-GAN-lib This repository collects chainer implementation of state-of-the-art GAN algorithms. These codes are evaluated with the inception score

399 Oct 23, 2022
Implementation for Simple Spectral Graph Convolution in ICLR 2021

Simple Spectral Graph Convolutional Overview This repo contains an example implementation of the Simple Spectral Graph Convolutional (S^2GC) model. Th

allenhaozhu 64 Dec 31, 2022
Simple API for UCI Machine Learning Dataset Repository (search, download, analyze)

A simple API for working with University of California, Irvine (UCI) Machine Learning (ML) repository Table of Contents Introduction About Page of the

Tirthajyoti Sarkar 223 Dec 05, 2022
Point Cloud Registration using Representative Overlapping Points.

Point Cloud Registration using Representative Overlapping Points (ROPNet) Abstract 3D point cloud registration is a fundamental task in robotics and c

ZhuLifa 36 Dec 16, 2022
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Master Docs License Apache MXNet (incubating) is a deep learning framework designed for both efficiency an

ROCm Software Platform 29 Nov 16, 2022
Rethinking the Importance of Implementation Tricks in Multi-Agent Reinforcement Learning

RIIT Our open-source code for RIIT: Rethinking the Importance of Implementation Tricks in Multi-AgentReinforcement Learning. We implement and standard

405 Jan 06, 2023
Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Yihong Sun 12 Nov 15, 2022
Structured Data Gradient Pruning (SDGP)

Structured Data Gradient Pruning (SDGP) Weight pruning is a technique to make Deep Neural Network (DNN) inference more computationally efficient by re

Bradley McDanel 10 Nov 11, 2022
TLDR: Twin Learning for Dimensionality Reduction

TLDR (Twin Learning for Dimensionality Reduction) is an unsupervised dimensionality reduction method that combines neighborhood embedding learning with the simplicity and effectiveness of recent self

NAVER 105 Dec 28, 2022
Multi-Scale Vision Longformer: A New Vision Transformer for High-Resolution Image Encoding

Vision Longformer This project provides the source code for the vision longformer paper. Multi-Scale Vision Longformer: A New Vision Transformer for H

Microsoft 209 Dec 30, 2022
An implementation of RetinaNet in PyTorch.

RetinaNet An implementation of RetinaNet in PyTorch. Installation Training COCO 2017 Pascal VOC Custom Dataset Evaluation Todo Credits Installation In

Conner Vercellino 297 Jan 04, 2023
Meta-learning for NLP

Self-Supervised Meta-Learning for Few-Shot Natural Language Classification Tasks Code for training the meta-learning models and fine-tuning on downstr

IESL 43 Nov 08, 2022
Research - dataset and code for 2016 paper Learning a Driving Simulator

the people's comma the paper Learning a Driving Simulator the comma.ai driving dataset 7 and a quarter hours of largely highway driving. Enough to tra

comma.ai 4.1k Jan 02, 2023
This repository contains the source code of Auto-Lambda and baselines from the paper, Auto-Lambda: Disentangling Dynamic Task Relationships.

Auto-Lambda This repository contains the source code of Auto-Lambda and baselines from the paper, Auto-Lambda: Disentangling Dynamic Task Relationship

Shikun Liu 76 Dec 20, 2022
Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification (NeurIPS 2021)

Graph Posterior Network This is the official code repository to the paper Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classifica

Maximilian Stadler 30 Dec 05, 2022
BYOL for Audio: Self-Supervised Learning for General-Purpose Audio Representation

BYOL for Audio: Self-Supervised Learning for General-Purpose Audio Representation This is a demo implementation of BYOL for Audio (BYOL-A), a self-sup

NTT Communication Science Laboratories 160 Jan 04, 2023
GARCH and Multivariate LSTM forecasting models for Bitcoin realized volatility with potential applications in crypto options trading, hedging, portfolio management, and risk management

Bitcoin Realized Volatility Forecasting with GARCH and Multivariate LSTM Author: Chi Bui This Repository Repository Directory ├── README.md

Chi Bui 113 Dec 29, 2022