This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation".

Related tags

Deep LearningObjProp
Overview

ObjProp

Introduction

This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation".

Installation

This repo is built using mmdetection. To install the dependencies, first clone the repository locally:

git clone https://github.com/anirudh-chakravarthy/objprop.git

Then, install PyTorch 1.1.0, torchvision 0.3.0, mmcv 0.2.12:

conda install pytorch==1.1.0 torchvision==0.3.0 -c pytorch
pip install mmcv==0.2.12

Then, install the CocoAPI for YouTube-VIS

conda install cython scipy
pip install git+https://github.com/youtubevos/cocoapi.git#"egg=pycocotools&subdirectory=PythonAPI"

Training

First, download and prepare the YouTube-VIS dataset using the following instructions.

To train ObjProp, run the following command:

python3 tools/train.py configs/masktrack_rcnn_r50_fpn_1x_youtubevos_objprop.py

In order to change the arguments such as dataset directory, learning rate, number of GPUs, etc, refer to the following configuration file configs/masktrack_rcnn_r50_fpn_1x_youtubevos_objprop.py.

Inference

To perform inference using ObjProp, run the following command:

python3 tools/test_video.py configs/masktrack_rcnn_r50_fpn_1x_youtubevos_objprop.py [MODEL_PATH] --out [OUTPUT_PATH.json] --eval segm

A JSON file with the inference results will be saved at OUTPUT_PATH.json. To evaluate the performance, submit the result file to the evaluation server.

License

ObjProp is released under the Apache 2.0 license.

Citation

@article{Chakravarthy2021ObjProp,
  author = {Anirudh S Chakravarthy and Won-Dong Jang and Zudi Lin and Donglai Wei and Song Bai and Hanspeter Pfister},  
  title = {Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation},
  journal = {CoRR},
  volume = {abs/2111.07529},
  year = {2021},
  url = {https://arxiv.org/abs/2111.07529}
}
Owner
Anirudh S Chakravarthy
MS in Computer Vision, CMU | Research Intern, Harvard VCG | B.E. Computer Science, BITS Pilani. Visit my site for more.
Anirudh S Chakravarthy
Code for HodgeNet: Learning Spectral Geometry on Triangle Meshes, in SIGGRAPH 2021.

HodgeNet | Webpage | Paper | Video HodgeNet: Learning Spectral Geometry on Triangle Meshes Dmitriy Smirnov, Justin Solomon SIGGRAPH 2021 Set-up To ins

Dima Smirnov 61 Nov 27, 2022
Reference implementation of code generation projects from Facebook AI Research. General toolkit to apply machine learning to code, from dataset creation to model training and evaluation. Comes with pretrained models.

This repository is a toolkit to do machine learning for programming languages. It implements tokenization, dataset preprocessing, model training and m

Facebook Research 408 Jan 01, 2023
An implementation of a discriminant function over a normal distribution to help classify datasets.

CS4044D Machine Learning Assignment 1 By Dev Sony, B180297CS The question, report and source code can be found here. Github Repo Solution 1 Based on t

Dev Sony 6 Nov 09, 2021
Code for our CVPR2021 paper coordinate attention

Coordinate Attention for Efficient Mobile Network Design (preprint) This repository is a PyTorch implementation of our coordinate attention (will appe

Qibin (Andrew) Hou 726 Jan 05, 2023
Team nan solution repository for FPT data-centric competition. Data augmentation, Albumentation, Mosaic, Visualization, KNN application

FPT_data_centric_competition - Team nan solution repository for FPT data-centric competition. Data augmentation, Albumentation, Mosaic, Visualization, KNN application

Pham Viet Hoang (Harry) 2 Oct 30, 2022
Codes for CVPR2021 paper "PWCLO-Net: Deep LiDAR Odometry in 3D Point Clouds Using Hierarchical Embedding Mask Optimization"

PWCLO-Net: Deep LiDAR Odometry in 3D Point Clouds Using Hierarchical Embedding Mask Optimization (CVPR 2021) This is the official implementation of PW

Intelligent Robotics and Machine Vision Lab 42 Dec 18, 2022
Differentiable architecture search for convolutional and recurrent networks

Differentiable Architecture Search Code accompanying the paper DARTS: Differentiable Architecture Search Hanxiao Liu, Karen Simonyan, Yiming Yang. arX

Hanxiao Liu 3.7k Jan 09, 2023
Pytorch implementation of One-Shot Affordance Detection

One-shot Affordance Detection PyTorch implementation of our one-shot affordance detection models. This repository contains PyTorch evaluation code, tr

46 Dec 12, 2022
A cross-lingual COVID-19 fake news dataset

CrossFake An English-Chinese COVID-19 fake&real news dataset from the ICDMW 2021 paper below: Cross-lingual COVID-19 Fake News Detection. Jiangshu Du,

Yingtong Dou 11 Dec 01, 2022
Python suite to construct benchmark machine learning datasets from the MIMIC-III clinical database.

MIMIC-III Benchmarks Python suite to construct benchmark machine learning datasets from the MIMIC-III clinical database. Currently, the benchmark data

Chengxi Zang 6 Jan 02, 2023
Source code of our TTH paper: Targeted Trojan-Horse Attacks on Language-based Image Retrieval.

Targeted Trojan-Horse Attacks on Language-based Image Retrieval Source code of our TTH paper: Targeted Trojan-Horse Attacks on Language-based Image Re

fine 7 Aug 23, 2022
Official PyTorch Implementation of Unsupervised Learning of Scene Flow Estimation Fusing with Local Rigidity

UnRigidFlow This is the official PyTorch implementation of UnRigidFlow (IJCAI2019). Here are two sample results (~10MB gif for each) of our unsupervis

Liang Liu 28 Nov 16, 2022
Using pytorch to implement unet network for liver image segmentation.

Using pytorch to implement unet network for liver image segmentation.

zxq 1 Dec 17, 2021
Code for Multiple Instance Active Learning for Object Detection, CVPR 2021

MI-AOD Language: 简体中文 | English Introduction This is the code for Multiple Instance Active Learning for Object Detection (The PDF is not available tem

Tianning Yuan 269 Dec 21, 2022
Bottleneck Transformers for Visual Recognition

Bottleneck Transformers for Visual Recognition Experiments Model Params (M) Acc (%) ResNet50 baseline (ref) 23.5M 93.62 BoTNet-50 18.8M 95.11% BoTNet-

Myeongjun Kim 236 Jan 03, 2023
Official implementation of the paper "Light Field Networks: Neural Scene Representations with Single-Evaluation Rendering"

Light Field Networks Project Page | Paper | Data | Pretrained Models Vincent Sitzmann*, Semon Rezchikov*, William Freeman, Joshua Tenenbaum, Frédo Dur

Vincent Sitzmann 130 Dec 29, 2022
"Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback"

This is code repo for our EMNLP 2017 paper "Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback", which implements the A2C algorithm on top of a neural encoder-

Khanh Nguyen 131 Oct 21, 2022
PyTorch framework, for reproducing experiments from the paper Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks

Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks. Code, based on the PyTorch framework, for reprodu

Asaf 3 Dec 27, 2022
Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash through feeding it pictures or videos.

Trash-Sorter-Extraordinaire Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash

Rameen Mahmood 1 Nov 07, 2021