Apache Flink

Overview

Apache Flink

Apache Flink is an open source stream processing framework with powerful stream- and batch-processing capabilities.

Learn more about Flink at https://flink.apache.org/

Features

  • A streaming-first runtime that supports both batch processing and data streaming programs

  • Elegant and fluent APIs in Java and Scala

  • A runtime that supports very high throughput and low event latency at the same time

  • Support for event time and out-of-order processing in the DataStream API, based on the Dataflow Model

  • Flexible windowing (time, count, sessions, custom triggers) across different time semantics (event time, processing time)

  • Fault-tolerance with exactly-once processing guarantees

  • Natural back-pressure in streaming programs

  • Libraries for Graph processing (batch), Machine Learning (batch), and Complex Event Processing (streaming)

  • Built-in support for iterative programs (BSP) in the DataSet (batch) API

  • Custom memory management for efficient and robust switching between in-memory and out-of-core data processing algorithms

  • Compatibility layers for Apache Hadoop MapReduce

  • Integration with YARN, HDFS, HBase, and other components of the Apache Hadoop ecosystem

Streaming Example

case class WordWithCount(word: String, count: Long)

val text = env.socketTextStream(host, port, '\n')

val windowCounts = text.flatMap { w => w.split("\\s") }
  .map { w => WordWithCount(w, 1) }
  .keyBy("word")
  .window(TumblingProcessingTimeWindow.of(Time.seconds(5)))
  .sum("count")

windowCounts.print()

Batch Example

case class WordWithCount(word: String, count: Long)

val text = env.readTextFile(path)

val counts = text.flatMap { w => w.split("\\s") }
  .map { w => WordWithCount(w, 1) }
  .groupBy("word")
  .sum("count")

counts.writeAsCsv(outputPath)

Building Apache Flink from Source

Prerequisites for building Flink:

  • Unix-like environment (we use Linux, Mac OS X, Cygwin, WSL)
  • Git
  • Maven (we recommend version 3.2.5 and require at least 3.1.1)
  • Java 8 or 11 (Java 9 or 10 may work)
git clone https://github.com/apache/flink.git
cd flink
mvn clean package -DskipTests # this will take up to 10 minutes

Flink is now installed in build-target.

NOTE: Maven 3.3.x can build Flink, but will not properly shade away certain dependencies. Maven 3.1.1 creates the libraries properly. To build unit tests with Java 8, use Java 8u51 or above to prevent failures in unit tests that use the PowerMock runner.

Developing Flink

The Flink committers use IntelliJ IDEA to develop the Flink codebase. We recommend IntelliJ IDEA for developing projects that involve Scala code.

Minimal requirements for an IDE are:

  • Support for Java and Scala (also mixed projects)
  • Support for Maven with Java and Scala

IntelliJ IDEA

The IntelliJ IDE supports Maven out of the box and offers a plugin for Scala development.

Check out our Setting up IntelliJ guide for details.

Eclipse Scala IDE

NOTE: From our experience, this setup does not work with Flink due to deficiencies of the old Eclipse version bundled with Scala IDE 3.0.3 or due to version incompatibilities with the bundled Scala version in Scala IDE 4.4.1.

We recommend to use IntelliJ instead (see above)

Support

Don’t hesitate to ask!

Contact the developers and community on the mailing lists if you need any help.

Open an issue if you found a bug in Flink.

Documentation

The documentation of Apache Flink is located on the website: https://flink.apache.org or in the docs/ directory of the source code.

Fork and Contribute

This is an active open-source project. We are always open to people who want to use the system or contribute to it. Contact us if you are looking for implementation tasks that fit your skills. This article describes how to contribute to Apache Flink.

About

Apache Flink is an open source project of The Apache Software Foundation (ASF). The Apache Flink project originated from the Stratosphere research project.

Owner
The Apache Software Foundation
The Apache Software Foundation
Vector.ai assignment

fabio-tests-nisargatman Low Level Approach: ###Tables: continents: id*, name, population, area, createdAt, updatedAt countries: id*, name, population,

Ravi Pullagurla 1 Nov 09, 2021
Public Code for NIPS submission SimiGrad: Fine-Grained Adaptive Batching for Large ScaleTraining using Gradient Similarity Measurement

Public code for NIPS submission "SimiGrad: Fine-Grained Adaptive Batching for Large Scale Training using Gradient Similarity Measurement" This repo co

Heyang Qin 0 Oct 13, 2021
Pacman-AI - AI project designed by UC Berkeley. Designed reflex and minimax agents for the game Pacman.

Pacman AI Jussi Doherty CAP 4601 - Introduction to Artificial Intelligence - Fall 2020 Python version 3.0+ Source of this project This repo contains a

Jussi Doherty 1 Jan 03, 2022
The official GitHub repository for the Argoverse 2 dataset.

Argoverse 2 API Official GitHub repository for the Argoverse 2 family of datasets. If you have any questions or run into any problems with either the

Argo AI 156 Dec 23, 2022
Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework

Official repository of OFA. Paper: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework

OFA Sys 1.4k Jan 08, 2023
Implementation of the paper "Generating Symbolic Reasoning Problems with Transformer GANs"

Generating Symbolic Reasoning Problems with Transformer GANs This is the implementation of the paper Generating Symbolic Reasoning Problems with Trans

Reactive Systems Group 1 Apr 18, 2022
Pytorch implementation for the Temporal and Object Quantification Networks (TOQ-Nets).

TOQ-Nets-PyTorch-Release Pytorch implementation for the Temporal and Object Quantification Networks (TOQ-Nets). Temporal and Object Quantification Net

Zhezheng Luo 9 Jun 30, 2022
Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis

Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Website | ICCV paper | arXiv | Twitter This repository contains the official i

Ajay Jain 73 Dec 27, 2022
A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation

Aboleth A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation [1] with stochastic gradient variational Bayes

Gradient Institute 127 Dec 12, 2022
PyTorch code for the paper "FIERY: Future Instance Segmentation in Bird's-Eye view from Surround Monocular Cameras"

FIERY This is the PyTorch implementation for inference and training of the future prediction bird's-eye view network as described in: FIERY: Future In

Wayve 406 Dec 24, 2022
Apply our monocular depth boosting to your own network!

MergeNet - Boost Your Own Depth Boost custom or edited monocular depth maps using MergeNet Input Original result After manual editing of base You can

Computational Photography Lab @ SFU 142 Dec 17, 2022
A big endian Gentoo port developed on a Pine64.org RockPro64

Gentoo-aarch64_be A big endian Gentoo port developed on a Pine64.org RockPro64 The endian wars are over... little endian won. As a result, it is incre

Rory Bolt 6 Dec 07, 2022
Code samples for my book "Neural Networks and Deep Learning"

Code samples for "Neural Networks and Deep Learning" This repository contains code samples for my book on "Neural Networks and Deep Learning". The cod

Michael Nielsen 13.9k Dec 26, 2022
My coursework for Machine Learning (2021 Spring) at National Taiwan University (NTU)

Machine Learning 2021 Machine Learning (NTU EE 5184, Spring 2021) Instructor: Hung-yi Lee Course Website : (https://speech.ee.ntu.edu.tw/~hylee/ml/202

100 Dec 26, 2022
Tensorflow Repo for "DeepGCNs: Can GCNs Go as Deep as CNNs?"

DeepGCNs: Can GCNs Go as Deep as CNNs? In this work, we present new ways to successfully train very deep GCNs. We borrow concepts from CNNs, mainly re

Guohao Li 612 Nov 15, 2022
Learning Temporal Consistency for Low Light Video Enhancement from Single Images (CVPR2021)

StableLLVE This is a Pytorch implementation of "Learning Temporal Consistency for Low Light Video Enhancement from Single Images" in CVPR 2021, by Fan

99 Dec 19, 2022
Deep Dual Consecutive Network for Human Pose Estimation (CVPR2021)

Beanie - is an asynchronous ODM for MongoDB, based on Motor and Pydantic. It uses an abstraction over Pydantic models and Motor collections to work wi

295 Dec 29, 2022
Implementation of Uniformer, a simple attention and 3d convolutional net that achieved SOTA in a number of video classification tasks

Uniformer - Pytorch Implementation of Uniformer, a simple attention and 3d convolutional net that achieved SOTA in a number of video classification ta

Phil Wang 90 Nov 24, 2022
Raptor-Multi-Tool - Raptor Multi Tool With Python

Promises 🔥 20 Stars and I'll fix every error that there is 50 Stars and we will

Aran 44 Jan 04, 2023
A community run, 5-day PyTorch Deep Learning Bootcamp

Deep Learning Winter School, November 2107. Tel Aviv Deep Learning Bootcamp : http://deep-ml.com. About Tel-Aviv Deep Learning Bootcamp is an intensiv

Shlomo Kashani. 1.3k Sep 04, 2021