(CVPR 2021) Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds

Related tags

Deep LearningBRNet
Overview

BRNet

fig_overview-c2

Introduction

This is a release of the code of our paper Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds, CVPR 2021.

Authors: Bowen Cheng, Lu Sheng*, Shaoshuai Shi, Ming Yang, Dong Xu (*corresponding author)

[arxiv]

In this repository, we reimplement BRNet based on mmdetection3d for easier usage.

Citation

If you find our work useful in your research, please consider citing:

@inproceedings{cheng2021brnet,
  title={Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds},
  author={Cheng, Bowen and Sheng, Lu and Shi, Shaoshuai and Yang, Ming and Xu, Dong},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  year={2021}
}

Installation

This repo is built based on mmdetection3d (V0.11.0), please follow the getting_started.md for installation.

The code is tested under the following environment:

  • Ubuntu 16.04 LTS
  • Python 3.7.10
  • Pytorch 1.5.0
  • CUDA 10.1
  • GCC 7.3

Datasets

ScanNet

Please follow the instruction here to prepare ScanNet Data.

SUN RGB-D

Please follow the instruction here to prepare SUN RGB-D Data.

Download Trained Models

We provide the trained models of ScanNet and SUN RGB-D with per-class performances.

ScanNet V2 AP_0.25 AR_0.25 AP_0.50 AR_0.50
cabinet 0.4898 0.7634 0.2800 0.5349
bed 0.8849 0.9506 0.7915 0.8642
chair 0.9149 0.9357 0.8354 0.8604
sofa 0.9049 0.9794 0.8027 0.9278
table 0.6802 0.8486 0.6146 0.7600
door 0.5955 0.7430 0.3721 0.5418
window 0.4814 0.7092 0.2405 0.4078
bookshelf 0.5876 0.8701 0.5032 0.7532
picture 0.1716 0.3243 0.0687 0.1396
counter 0.6085 0.8846 0.3545 0.5385
desk 0.7538 0.9528 0.5481 0.7874
curtain 0.6275 0.7910 0.4126 0.5224
refrigerator 0.5467 0.9474 0.4882 0.8070
showercurtrain 0.7349 0.9643 0.5189 0.6786
toilet 0.9896 1.0000 0.9227 0.9310
sink 0.5901 0.6735 0.3521 0.4490
bathtub 0.8605 0.9355 0.8565 0.9032
garbagebin 0.4726 0.7151 0.3169 0.5170
Overall 0.6608 0.8327 0.5155 0.6624
SUN RGB-D AP_0.25 AR_0.25 AP_0.50 AR_0.50
bed 0.8633 0.9553 0.6544 0.7592
table 0.5136 0.8552 0.2981 0.5268
sofa 0.6754 0.8931 0.5830 0.7193
chair 0.7864 0.8723 0.6301 0.7137
toilet 0.8699 0.9793 0.7125 0.8345
desk 0.2929 0.8082 0.1134 0.4017
dresser 0.3237 0.7615 0.2058 0.4954
night_stand 0.5933 0.8627 0.4490 0.6588
bookshelf 0.3394 0.7199 0.1574 0.3652
bathtub 0.7505 0.8776 0.5383 0.6531
Overall 0.6008 0.8585 0.4342 0.6128

Note: Due to the detection results are unstable and fluctuate within 1~2 mAP points, the results here are slightly different from those in the paper.

Training

For ScanNet V2, please run:

CUDA_VISIBLE_DEVICES=0 python tools/train.py configs/brnet/brnet_8x1_scannet-3d-18class.py --seed 42

For SUN RGB-D, please run:

CUDA_VISIBLE_DEVICES=0 python tools/train.py configs/brnet/brnet_8x1_sunrgbd-3d-10class.py --seed 42

Demo

To test a 3D detector on point cloud data, please refer to Single modality demo and Point cloud demo in MMDetection3D docs.

Here, we provide a demo on SUN RGB-D dataset.

CUDA_VISIBLE_DEVICES=0 python demo/pcd_demo.py sunrgbd_000094.bin demo/brnet_8x1_sunrgbd-3d-10class.py checkpoints/brnet_8x1_sunrgbd-3d-10class_trained.pth

Visualization results

ScanNet

SUN RGB-D

Acknowledgments

Our code is heavily based on mmdetection3d. Thanks mmdetection3d Development Team for their awesome codebase.

Implementation for the "Surface Reconstruction from 3D Line Segments" paper.

Surface Reconstruction from 3D Line Segments Surface reconstruction from 3d line segments. Langlois, P. A., Boulch, A., & Marlet, R. In 2019 Internati

85 Jan 04, 2023
Reading list for research topics in Masked Image Modeling

awesome-MIM Reading list for research topics in Masked Image Modeling(MIM). We list the most popular methods for MIM, if I missed something, please su

ligang 231 Dec 07, 2022
Reading Group @mila-iqia on Computational Optimal Transport for Machine Learning Applications

Computational Optimal Transport for Machine Learning Reading Group Over the last few years, optimal transport (OT) has quickly become a central topic

Ali Harakeh 11 Aug 26, 2022
Software for Multimodalty 2D+3D Facial Expression Recognition (FER) UI

EmotionUI Software for Multimodalty 2D+3D Facial Expression Recognition (FER) UI. demo screenshot (with RealSense) required packages Python = 3.6 num

Yang Jiao 2 Dec 23, 2021
RetinaFace: Deep Face Detection Library in TensorFlow for Python

RetinaFace is a deep learning based cutting-edge facial detector for Python coming with facial landmarks.

Sefik Ilkin Serengil 512 Dec 29, 2022
Deep learning with TensorFlow and earth observation data.

Deep Learning with TensorFlow and EO Data Complete file set for Jupyter Book Autor: Development Seed Date: 04 October 2021 ISBN: (to come) Notebook tu

Development Seed 20 Nov 16, 2022
The official github repository for Towards Continual Knowledge Learning of Language Models

Towards Continual Knowledge Learning of Language Models This is the official github repository for Towards Continual Knowledge Learning of Language Mo

Joel Jang | 장요엘 65 Jan 07, 2023
Light-Head R-CNN

Light-head R-CNN Introduction We release code for Light-Head R-CNN. This is my best practice for my research. This repo is organized as follows: light

jemmy li 835 Dec 06, 2022
A Factor Model for Persistence in Investment Manager Performance

Factor-Model-Manager-Performance A Factor Model for Persistence in Investment Manager Performance I apply methods and processes similar to those used

Omid Arhami 1 Dec 01, 2021
This project aims to segment 4 common retinal lesions from Fundus Images.

This project aims to segment 4 common retinal lesions from Fundus Images.

Husam Nujaim 1 Oct 10, 2021
Classify bird species based on their songs using SIamese Networks and 1D dilated convolutions.

The goal is to classify different birds species based on their songs/calls. Spectrograms have been extracted from the audio samples and used as features for classification.

Aditya Dutt 9 Dec 27, 2022
UMPNet: Universal Manipulation Policy Network for Articulated Objects

UMPNet: Universal Manipulation Policy Network for Articulated Objects Zhenjia Xu, Zhanpeng He, Shuran Song Columbia University Robotics and Automation

Columbia Artificial Intelligence and Robotics Lab 33 Dec 03, 2022
Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite.

TFlite Ultra Fast Lane Detection Inference Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite. So

Ibai Gorordo 12 Aug 27, 2022
[CVPR 2021] Unsupervised Degradation Representation Learning for Blind Super-Resolution

DASR Pytorch implementation of "Unsupervised Degradation Representation Learning for Blind Super-Resolution", CVPR 2021 [arXiv] Overview Requirements

Longguang Wang 318 Dec 24, 2022
This repository focus on Image Captioning & Video Captioning & Seq-to-Seq Learning & NLP

Awesome-Visual-Captioning Table of Contents ACL-2021 CVPR-2021 AAAI-2021 ACMMM-2020 NeurIPS-2020 ECCV-2020 CVPR-2020 ACL-2020 AAAI-2020 ACL-2019 NeurI

Ziqi Zhang 362 Jan 03, 2023
TCPNet - Temporal-attentive-Covariance-Pooling-Networks-for-Video-Recognition

Temporal-attentive-Covariance-Pooling-Networks-for-Video-Recognition This is an implementation of TCPNet. Introduction For video recognition task, a g

Zilin Gao 21 Dec 08, 2022
RP-GAN: Stable GAN Training with Random Projections

RP-GAN: Stable GAN Training with Random Projections This repository contains a reference implementation of the algorithm described in the paper: Behna

Ayan Chakrabarti 20 Sep 18, 2021
Runtime type annotations for the shape, dtype etc. of PyTorch Tensors.

torchtyping Type annotations for a tensor's shape, dtype, names, ... Turn this: def batch_outer_product(x: torch.Tensor, y: torch.Tensor) - torch.Ten

Patrick Kidger 1.2k Jan 03, 2023
Repo 4 basic seminar §How to make human machine readable"

WORK IN PROGRESS... Notebooks from the Seminar: Human Machine Readable WS21/22 Introduction into programming Georg Trogemann, Christian Heck, Mattis

experimental-informatics 3 May 29, 2022
A general 3D Object Detection codebase in PyTorch.

Det3D is the first 3D Object Detection toolbox which provides off the box implementations of many 3D object detection algorithms such as PointPillars, SECOND, PIXOR, etc, as well as state-of-the-art

Benjin Zhu 1.4k Jan 05, 2023