we propose EfficientDerain for high-efficiency single-image deraining

Overview

EfficientDerain

we propose EfficientDerain for high-efficiency single-image deraining

Requirements

  • python 3.6
  • pytorch 1.6.0
  • opencv-python 4.4.0.44
  • scikit-image 0.17.2

Datasets

Pretrained models

Here is the urls of pretrained models (includes v3_rain100H, v3_rain1400, v3_SPA, v4_rain100H, v4_rain1400, v4_SPA) :

direct download: http://www.xujuefei.com/models_effderain.zip

google drive: https://drive.google.com/file/d/1OBAIG4su6vIPEimTX7PNuQTxZDjtCUD8/view?usp=sharing

baiduyun: https://pan.baidu.com/s/1kFWP-b3tD8Ms7VCBj9f1kw (pwd: vr3g)

Train

  • The code shown corresponds to version v3, for v4 change the value of argument "rainaug" in file "./train.sh" to the "true" (You need to unzip the "Streaks_Garg06.zip" in the "./rainmix")
  • Change the value of argument "baseroot" in file "./train.sh" to the path of training data
  • Edit the function "get_files" in file "./utils" according to the format of the training data
  • Execute
sh train.sh

Test

  • The code shown corresponds to version v3
  • Change the value of argument "load_name" in file "./test.sh" to the path of pretained model
  • Change the value of argument "baseroot" in file "./test.sh" to the path of testing data
  • Edit the function "get_files" in file "./utils" according to the format of the testing data
  • Execute
sh test.sh

Results

The specific results can be found in โ€œ./results/data/DERAIN.xlsxโ€

GT vs RCDNet

GT vs EfDeRain

Input vs GT

GT vs RCDNet

GT vs EfDeRain

Input vs GT

GT vs v1

GT vs v2

GT vs v3

GT vs v4

GT vs v1

GT vs v2

GT vs v3

GT vs v4

Bibtex

@inproceedings{guo2020efficientderain,
      title={EfficientDeRain: Learning Pixel-wise Dilation Filtering for High-Efficiency Single-Image Deraining}, 
      author={Qing Guo and Jingyang Sun and Felix Juefei-Xu and Lei Ma and Xiaofei Xie and Wei Feng and Yang Liu},
      year={2021},
      booktitle={AAAI}
}
Owner
Qing Guo
Presidential Postdoctoral Fellow with the Nanyang Technological University. Research interests are computer vision, image processing, deep learning.
Qing Guo
Code for Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding

๐Ÿ quince Code for Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding ๐Ÿ Installation $ git clone

Andrew Jesson 19 Jun 23, 2022
Source Code for ICSE 2022 Paper - ``Can We Achieve Fairness Using Semi-Supervised Learning?''

Fair-SSL Source Code for ICSE 2022 Paper - Can We Achieve Fairness Using Semi-Supervised Learning? Ethical bias in machine learning models has become

1 Dec 18, 2021
Generate images from texts. In Russian

ruDALL-E Generate images from texts pip install rudalle==1.1.0rc0 ๐Ÿค— HF Models: ruDALL-E Malevich (XL) ruDALL-E Emojich (XL) (readme here) ruDALL-E S

AI Forever 1.6k Dec 31, 2022
Multiple-criteria decision-making (MCDM) with Electre, Promethee, Weighted Sum and Pareto

EasyMCDM - Quick Installation methods Install with PyPI Once you have created your Python environment (Python 3.6+) you can simply type: pip3 install

Labrak Yanis 6 Nov 22, 2022
DANet for Tabular data classification/ regression.

Deep Abstract Networks A PyTorch code implemented for the submission DANets: Deep Abstract Networks for Tabular Data Classification and Regression. Do

Ronnie Rocket 55 Sep 14, 2022
Artificial intelligence technology inferring issues and logically supporting facts from raw text

๊ฐœ์š” ๋น„์ •ํ˜• ํ…์ŠคํŠธ๋ฅผ ํ•™์Šตํ•˜์—ฌ ์Ÿ์ ๋ณ„ ์‚ฌ์‹ค๊ณผ ๋…ผ๋ฆฌ์  ๊ทผ๊ฑฐ ์ถ”๋ก ์ด ๊ฐ€๋Šฅํ•œ ์ธ๊ณต์ง€๋Šฅ ์›์ฒœ๊ธฐ์ˆ  Artificial intelligence techno

6 Dec 29, 2021
MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021)

MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021) Overview We release the code of the MVFNet (Multi-View Fusion Network).

2 Jan 29, 2022
The official codes for the ICCV2021 presentation "Uniformity in Heterogeneity: Diving Deep into Count Interval Partition for Crowd Counting"

UEPNet (ICCV2021 Poster Presentation) This repository contains codes for the official implementation in PyTorch of UEPNet as described in Uniformity i

Tencent YouTu Research 15 Dec 14, 2022
A fuzzing framework for SMT solvers

yinyang A fuzzing framework for SMT solvers. Given a set of seed SMT formulas, yinyang generates mutant formulas to stress-test SMT solvers. yinyang c

Project Yin-Yang for SMT Solver Testing 145 Jan 04, 2023
Activity tragle - Google is tracking everything, we just look at it

activity_tragle Google is tracking everything, we just look at it here. You need

BERNARD Guillaume 1 Feb 15, 2022
Federated_learning codes used for the the paper "Evaluation of Federated Learning Aggregation Algorithms" and "A Federated Learning Aggregation Algorithm for Pervasive Computing: Evaluation and Comparison"

Federated Distance (FedDist) This is the code accompanying the Percom2021 paper "A Federated Learning Aggregation Algorithm for Pervasive Computing: E

GETALP 8 Jan 03, 2023
Unofficial pytorch implementation of paper "One-Shot Free-View Neural Talking-Head Synthesis for Video Conferencing"

One-Shot Free-View Neural Talking Head Synthesis Unofficial pytorch implementation of paper "One-Shot Free-View Neural Talking-Head Synthesis for Vide

ZLH 406 Dec 23, 2022
Learning to Reach Goals via Iterated Supervised Learning

Vanilla GCSL This repository contains a vanilla implementation of "Learning to Reach Goals via Iterated Supervised Learning" proposed by Dibya Gosh et

Christoph Heindl 4 Aug 10, 2022
Hashformers is a framework for hashtag segmentation with transformers.

Hashtag segmentation is the task of automatically inserting the missing spaces between the words in a hashtag. Hashformers applies Transformer models

Ruan Chaves 41 Nov 09, 2022
An open-source, low-cost, image-based weed detection device for fallow scenarios.

Welcome to the OpenWeedLocator (OWL) project, an opensource hardware and software green-on-brown weed detector that uses entirely off-the-shelf compon

Guy Coleman 145 Jan 05, 2023
Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP

Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP Abstract: We introduce a method that allows to automatically se

Daniil Pakhomov 134 Dec 19, 2022
Official PyTorch implementation of Joint Object Detection and Multi-Object Tracking with Graph Neural Networks

This is the official PyTorch implementation of our paper: "Joint Object Detection and Multi-Object Tracking with Graph Neural Networks". Our project website and video demos are here.

Richardย Wang 443 Dec 06, 2022
Pytorch Implementation of Google's Parallel Tacotron 2: A Non-Autoregressive Neural TTS Model with Differentiable Duration Modeling

Parallel Tacotron2 Pytorch Implementation of Google's Parallel Tacotron 2: A Non-Autoregressive Neural TTS Model with Differentiable Duration Modeling

Keon Lee 170 Dec 27, 2022
PyTorch implementation for the paper Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime

Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime Created by Prarthana Bhattacharyya. Disclaimer: This is n

Prarthana Bhattacharyya 5 Nov 08, 2022