we propose EfficientDerain for high-efficiency single-image deraining

Overview

EfficientDerain

we propose EfficientDerain for high-efficiency single-image deraining

Requirements

  • python 3.6
  • pytorch 1.6.0
  • opencv-python 4.4.0.44
  • scikit-image 0.17.2

Datasets

Pretrained models

Here is the urls of pretrained models (includes v3_rain100H, v3_rain1400, v3_SPA, v4_rain100H, v4_rain1400, v4_SPA) :

direct download: http://www.xujuefei.com/models_effderain.zip

google drive: https://drive.google.com/file/d/1OBAIG4su6vIPEimTX7PNuQTxZDjtCUD8/view?usp=sharing

baiduyun: https://pan.baidu.com/s/1kFWP-b3tD8Ms7VCBj9f1kw (pwd: vr3g)

Train

  • The code shown corresponds to version v3, for v4 change the value of argument "rainaug" in file "./train.sh" to the "true" (You need to unzip the "Streaks_Garg06.zip" in the "./rainmix")
  • Change the value of argument "baseroot" in file "./train.sh" to the path of training data
  • Edit the function "get_files" in file "./utils" according to the format of the training data
  • Execute
sh train.sh

Test

  • The code shown corresponds to version v3
  • Change the value of argument "load_name" in file "./test.sh" to the path of pretained model
  • Change the value of argument "baseroot" in file "./test.sh" to the path of testing data
  • Edit the function "get_files" in file "./utils" according to the format of the testing data
  • Execute
sh test.sh

Results

The specific results can be found in “./results/data/DERAIN.xlsx

GT vs RCDNet

GT vs EfDeRain

Input vs GT

GT vs RCDNet

GT vs EfDeRain

Input vs GT

GT vs v1

GT vs v2

GT vs v3

GT vs v4

GT vs v1

GT vs v2

GT vs v3

GT vs v4

Bibtex

@inproceedings{guo2020efficientderain,
      title={EfficientDeRain: Learning Pixel-wise Dilation Filtering for High-Efficiency Single-Image Deraining}, 
      author={Qing Guo and Jingyang Sun and Felix Juefei-Xu and Lei Ma and Xiaofei Xie and Wei Feng and Yang Liu},
      year={2021},
      booktitle={AAAI}
}
Owner
Qing Guo
Presidential Postdoctoral Fellow with the Nanyang Technological University. Research interests are computer vision, image processing, deep learning.
Qing Guo
This is the official implementation of Elaborative Rehearsal for Zero-shot Action Recognition (ICCV2021)

Elaborative Rehearsal for Zero-shot Action Recognition This is an official implementation of: Shizhe Chen and Dong Huang, Elaborative Rehearsal for Ze

DeLightCMU 26 Sep 24, 2022
This solves the autonomous driving issue which is supported by deep learning technology. Given a video, it splits into images and predicts the angle of turning for each frame.

Self Driving Car An autonomous car (also known as a driverless car, self-driving car, and robotic car) is a vehicle that is capable of sensing its env

Sagor Saha 4 Sep 04, 2021
Train SN-GAN with AdaBelief

SNGAN-AdaBelief Train a state-of-the-art spectral normalization GAN with AdaBelief https://github.com/juntang-zhuang/Adabelief-Optimizer Acknowledgeme

Juntang Zhuang 10 Jun 11, 2022
Official PyTorch implementation of Synergies Between Affordance and Geometry: 6-DoF Grasp Detection via Implicit Representations

Synergies Between Affordance and Geometry: 6-DoF Grasp Detection via Implicit Representations Zhenyu Jiang, Yifeng Zhu, Maxwell Svetlik, Kuan Fang, Yu

UT-Austin Robot Perception and Learning Lab 63 Jan 03, 2023
A Pytree Module system for Deep Learning in JAX

Treex A Pytree-based Module system for Deep Learning in JAX Intuitive: Modules are simple Python objects that respect Object-Oriented semantics and sh

Cristian Garcia 216 Dec 20, 2022
Predict stock movement with Machine Learning and Deep Learning algorithms

Project Overview Stock market movement prediction using LSTM Deep Neural Networks and machine learning algorithms Software and Library Requirements Th

Naz Delam 46 Sep 13, 2022
Official Pytorch implementation of "Beyond Static Features for Temporally Consistent 3D Human Pose and Shape from a Video", CVPR 2021

TCMR: Beyond Static Features for Temporally Consistent 3D Human Pose and Shape from a Video Qualtitative result Paper teaser video Introduction This r

Hongsuk Choi 215 Jan 06, 2023
Detection of PCBA defect

Detection_of_PCBA_defect Detection_of_PCBA_defect Use yolov5 to train. $pip install -r requirements.txt Detect.py will detect file(jpg,mp4...) in cu

6 Nov 28, 2022
Learning to Segment Instances in Videos with Spatial Propagation Network

Learning to Segment Instances in Videos with Spatial Propagation Network This paper is available at the 2017 DAVIS Challenge website. Check our result

Jingchun Cheng 145 Sep 28, 2022
Scripts and misc. stuff related to the PortSwigger Web Academy

PortSwigger Web Academy Notes Mostly scripts to automate the exploits. Going in the order of the recomended learning path - starting with SQLi. Commun

pageinsec 17 Dec 30, 2022
Recognize Handwritten Digits using Deep Learning on the browser itself.

MNIST on the Web An attempt to predict MNIST handwritten digits from my PyTorch model from the browser (client-side) and not from the server, with the

Harjyot Bagga 7 May 28, 2022
Codes to calculate solar-sensor zenith and azimuth angles directly from hyperspectral images collected by UAV. Works only for UAVs that have high resolution GNSS/IMU unit.

UAV Solar-Sensor Angle Calculation Table of Contents About The Project Built With Getting Started Prerequisites Installation Datasets Contributing Lic

Sourav Bhadra 1 Jan 15, 2022
[CVPR 2021] Exemplar-Based Open-Set Panoptic Segmentation Network (EOPSN)

EOPSN: Exemplar-Based Open-Set Panoptic Segmentation Network (CVPR 2021) PyTorch implementation for EOPSN. We propose open-set panoptic segmentation t

Jaedong Hwang 49 Dec 30, 2022
ByteTrack超详细教程!训练自己的数据集&&摄像头实时检测跟踪

ByteTrack超详细教程!训练自己的数据集&&摄像头实时检测跟踪

Double-zh 45 Dec 19, 2022
Official Implementation of CVPR 2022 paper: "Mimicking the Oracle: An Initial Phase Decorrelation Approach for Class Incremental Learning"

(CVPR 2022) Mimicking the Oracle: An Initial Phase Decorrelation Approach for Class Incremental Learning ArXiv This repo contains Official Implementat

Yujun Shi 24 Nov 01, 2022
Efficient Conformer: Progressive Downsampling and Grouped Attention for Automatic Speech Recognition

Efficient Conformer: Progressive Downsampling and Grouped Attention for Automatic Speech Recognition Official implementation of the Efficient Conforme

Maxime Burchi 145 Dec 30, 2022
Neural networks applied in recognizing guitar chords using python, AutoML.NET with C# and .NET Core

Chord Recognition Demo application The demo application is written in C# with .NETCore. As of July 9, 2020, the only version available is for windows

Andres Mauricio Rondon Patiño 24 Oct 22, 2022
Research using Cirq!

ReCirq Research using Cirq! This project contains modules for running quantum computing applications and experiments through Cirq and Quantum Engine.

quantumlib 230 Dec 29, 2022
Background-Click Supervision for Temporal Action Localization

Background-Click Supervision for Temporal Action Localization This repository is the official implementation of BackTAL. In this work, we study the te

LeYang 221 Oct 09, 2022
Only works with the dashboard version / branch of jesse

Jesse optuna Only works with the dashboard version / branch of jesse. The config.yml should be self-explainatory. Installation # install from git pip

Markus K. 8 Dec 04, 2022