PyTorch implementation of the ExORL: Exploratory Data for Offline Reinforcement Learning

Overview

ExORL: Exploratory Data for Offline Reinforcement Learning

This is an original PyTorch implementation of the ExORL framework from

Don't Change the Algorithm, Change the Data: Exploratory Data for Offline Reinforcement Learning by

Denis Yarats*, David Brandfonbrener*, Hao Liu, Misha Laskin, Pieter Abbeel, Alessandro Lazaric, and Lerrel Pinto.

*Equal contribution.

Prerequisites

Install MuJoCo if it is not already the case:

  • Download MuJoCo binaries here.
  • Unzip the downloaded archive into ~/.mujoco/.
  • Append the MuJoCo subdirectory bin path into the env variable LD_LIBRARY_PATH.

Install the following libraries:

sudo apt update
sudo apt install libosmesa6-dev libgl1-mesa-glx libglfw3 unzip

Install dependencies:

conda env create -f conda_env.yml
conda activate exorl

Datasets

We provide exploratory datasets for 6 DeepMind Control Stuite domains

Domain Dataset name Available task names
Cartpole cartpole cartpole_balance, cartpole_balance_sparse, cartpole_swingup, cartpole_swingup_sparse
Cheetah cheetah cheetah_run, cheetah_run_backward
Jaco Arm jaco jaco_reach_top_left, jaco_reach_top_right, jaco_reach_bottom_left, jaco_reach_bottom_right
Point Mass Maze point_mass_maze point_mass_maze_reach_top_left, point_mass_maze_reach_top_right, point_mass_maze_reach_bottom_left, point_mass_maze_reach_bottom_right
Quadruped quadruped quadruped_walk, quadruped_run
Walker walker walker_stand, walker_walk, walker_run

For each domain we collected datasets by running 9 unsupervised RL algorithms from URLB for total of 10M steps. Here is the list of algorithms

Unsupervised RL method Name Paper
APS aps paper
APT(ICM) icm_apt paper
DIAYN diayn paper
Disagreement disagreement paper
ICM icm paper
ProtoRL proto paper
Random random N/A
RND rnd paper
SMM smm paper

You can download a dataset by running ./download.sh , for example to download ProtoRL dataset for Walker, run

./download.sh walker proto

The script will download the dataset from S3 and store it under datasets/walker/proto/, where you can find episodes (under buffer) and episode videos (under video).

Offline RL training

We also provide implementation of 5 offline RL algorithms for evaluating the datasets

Offline RL method Name Paper
Behavior Cloning bc paper
CQL cql paper
CRR crr paper
TD3+BC td3_bc paper
TD3 td3 paper

After downloading required datasets, you can evaluate it using offline RL methon for a specific task. For example, to evaluate a dataset collected by ProtoRL on Walker for the waling task using TD3+BC you can run

python train_offline.py agent=td3_bc expl_agent=proto task=walker_walk

Logs are stored in the output folder. To launch tensorboard run:

tensorboard --logdir output

Citation

If you use this repo in your research, please consider citing the paper as follows:

@article{yarats2022exorl,
  title={Don't Change the Algorithm, Change the Data: Exploratory Data for Offline Reinforcement Learning},
  author={Denis Yarats, David Brandfonbrener, Hao Liu, Michael Laskin, Pieter Abbeel, Alessandro Lazaric, Lerrel Pinto},
  journal={arXiv preprint arXiv:2201.13425},
  year={2022}
}

License

The majority of ExORL is licensed under the MIT license, however portions of the project are available under separate license terms: DeepMind is licensed under the Apache 2.0 license.

Owner
Denis Yarats
PhD student in AI at New York University and Facebook AI Research
Denis Yarats
Graph Transformer Architecture. Source code for

Graph Transformer Architecture Source code for the paper "A Generalization of Transformer Networks to Graphs" by Vijay Prakash Dwivedi and Xavier Bres

NTU Graph Deep Learning Lab 561 Jan 08, 2023
DABO: Data Augmentation with Bilevel Optimization

DABO: Data Augmentation with Bilevel Optimization [Paper] The goal is to automatically learn an efficient data augmentation regime for image classific

ElementAI 24 Aug 12, 2022
Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion (CVPR'2021, Oral)

DSA^2 F: Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion (CVPR'2021, Oral) This repo is the official imp

如今我已剑指天涯 46 Dec 21, 2022
PyTorch Implementation of ECCV 2020 Spotlight TuiGAN: Learning Versatile Image-to-Image Translation with Two Unpaired Images

TuiGAN-PyTorch Official PyTorch Implementation of "TuiGAN: Learning Versatile Image-to-Image Translation with Two Unpaired Images" (ECCV 2020 Spotligh

181 Dec 09, 2022
Just Randoms Cats with python

Random-Cat Just Randoms Cats with python.

OriCode 2 Dec 21, 2021
Code for sound field predictions in domains with impedance boundaries. Used for generating results from the paper

Code for sound field predictions in domains with impedance boundaries. Used for generating results from the paper

DTU Acoustic Technology Group 11 Dec 17, 2022
Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis

Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Website | ICCV paper | arXiv | Twitter This repository contains the official i

Ajay Jain 73 Dec 27, 2022
This repository contains the implementation of the paper Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans

Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans This repository contains the implementation of the pap

Photogrammetry & Robotics Bonn 40 Dec 01, 2022
A GPU-optional modular synthesizer in pytorch, 16200x faster than realtime, for audio ML researchers.

torchsynth The fastest synth in the universe. Introduction torchsynth is based upon traditional modular synthesis written in pytorch. It is GPU-option

torchsynth 229 Jan 02, 2023
PyTorch implementation of the paper Dynamic Data Augmentation with Gating Networks

Dynamic Data Augmentation with Gating Networks This is an official PyTorch implementation of the paper Dynamic Data Augmentation with Gating Networks

九州大学 ヒューマンインタフェース研究室 3 Oct 26, 2022
Code for 'Self-Guided and Cross-Guided Learning for Few-shot segmentation. (CVPR' 2021)'

SCL Introduction Code for 'Self-Guided and Cross-Guided Learning for Few-shot segmentation. (CVPR' 2021)' We evaluated our approach using two baseline

34 Oct 08, 2022
Official repository for Fourier model that can generate periodic signals

Conditional Generation of Periodic Signals with Fourier-Based Decoder Jiyoung Lee, Wonjae Kim, Daehoon Gwak, Edward Choi This repository provides offi

8 May 25, 2022
PyTorch implementation of UPFlow (unsupervised optical flow learning)

UPFlow: Upsampling Pyramid for Unsupervised Optical Flow Learning By Kunming Luo, Chuan Wang, Shuaicheng Liu, Haoqiang Fan, Jue Wang, Jian Sun Megvii

kunming luo 87 Dec 20, 2022
This repository contains PyTorch code for Robust Vision Transformers.

This repository contains PyTorch code for Robust Vision Transformers.

117 Dec 07, 2022
This repository contains the accompanying code for Deep Virtual Markers for Articulated 3D Shapes, ICCV'21

Deep Virtual Markers This repository contains the accompanying code for Deep Virtual Markers for Articulated 3D Shapes, ICCV'21 Getting Started Get sa

KimHyomin 45 Oct 07, 2022
Pytorch implementation of our method for high-resolution (e.g. 2048x1024) photorealistic video-to-video translation.

vid2vid Project | YouTube(short) | YouTube(full) | arXiv | Paper(full) Pytorch implementation for high-resolution (e.g., 2048x1024) photorealistic vid

NVIDIA Corporation 8.1k Jan 01, 2023
Summary Explorer is a tool to visually explore the state-of-the-art in text summarization.

Summary Explorer Summary Explorer is a tool to visually inspect the summaries from several state-of-the-art neural summarization models across multipl

Webis 42 Aug 14, 2022
Code for "MetaMorph: Learning Universal Controllers with Transformers", Gupta et al, ICLR 2022

MetaMorph: Learning Universal Controllers with Transformers This is the code for the paper MetaMorph: Learning Universal Controllers with Transformers

Agrim Gupta 50 Jan 03, 2023
Can we visualize a large scientific data set with a surrogate model? We're building a GAN for the Earth's Mantle Convection data set to see if we can!

EarthGAN - Earth Mantle Surrogate Modeling Can a surrogate model of the Earth’s Mantle Convection data set be built such that it can be readily run in

Tim 0 Dec 09, 2021
Use your Philips Hue lights as Racing Flags. Works with Assetto Corsa, Assetto Corsa Competizione and iRacing.

phue-racing-flags Use your Philips Hue lights as Racing Flags. Explore the docs » Report Bug · Request Feature Table of Contents About The Project Bui

50 Sep 03, 2022