Free Book about Deep-Learning approaches for Chess (like AlphaZero, Leela Chess Zero and Stockfish NNUE)

Overview

Neural Networks For Chess

cover

Free Book

  • Grab your free PDF copy HERE
  • Buy a printed copy at HERE or HERE

Donations are welcome:

paypal

Contents

AlphaZero, Leela Chess Zero and Stockfish NNUE revolutionized Computer Chess. This book gives a complete introduction into the technical inner workings of such engines.

The book is split into four chapters:

  1. The first chapter introduces neural networks and covers all the basic building blocks that are used to build deep networks such as those used by AlphaZero. Contents include the perceptron, back-propagation and gradient descent, classification, regression, multilayer perpectron, vectorization techniques, convolutional netowrks, squeeze and exciation networks, fully connected networks, batch normalization and rectified linear units, residual layers, overfitting and underfitting.

  2. The second chapter introduces classical search techniques used for chess engines as well as those used by AlphaZero. Contents include minimax, alpha-beta search, and Monte Carlo tree search.

  3. The third chapter shows how modern chess engines are designed. Aside from the ground-breaking AlphaGo, AlphaGo Zero and AlphaZero we cover Leela Chess Zero, Fat Fritz, Fat Fritz 2 and Effectively Updateable Neural Networks (NNUE) as well as Maia.

  4. The fourth chapter is about implementing a miniaturized AlphaZero. Hexapawn, a minimalistic version of chess, is used as an example for that. Hexapawn is solved by minimax search and training positions for supervised learning are generated. Then as a comparison, an AlphaZero-like training loop is implemented where training is done via self-play combined with reinforcement learning. Finally, AlphaZero-like training and supervised training are compared.

Source Code

Just clone this repository or directly browse the files. You will find here all sources of the examples of the book.

About

During COVID, I worked a lot from home and saved approximately 1.5 hours of commuting time each day. I decided to use that time to do something useful (?) and wrote a book about computer chess. In the end I decided to release the book for free.

Profits

To be completely transparent, here is what I make from every paper copy sold on Amazon. The book retails for $16.95 (about 15 Euro).

  • printing costs $4.04
  • Amazon takes $6.78
  • my royalties are $6.13

Errata

If you find mistakes, please report them here - your help is appreciated!

You might also like...
All course materials for the Zero to Mastery Deep Learning with TensorFlow course.
All course materials for the Zero to Mastery Deep Learning with TensorFlow course.

All course materials for the Zero to Mastery Deep Learning with TensorFlow course.

PyTorch implementation of 1712.06087
PyTorch implementation of 1712.06087 "Zero-Shot" Super-Resolution using Deep Internal Learning

Unofficial PyTorch implementation of "Zero-Shot" Super-Resolution using Deep Internal Learning Unofficial Implementation of 1712.06087 "Zero-Shot" Sup

[IJCAI-2021] A benchmark of data-free knowledge distillation from paper
[IJCAI-2021] A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation"

DataFree A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation" Authors: Gongfa

FuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space OptimizationFuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space Optimization
FuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space OptimizationFuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space Optimization

FuseDream This repo contains code for our paper (paper link): FuseDream: Training-Free Text-to-Image Generation with Improved CLIP+GAN Space Optimizat

Free-duolingo-plus - Duolingo account creator that uses your invite code to get you free duolingo plus
Free-duolingo-plus - Duolingo account creator that uses your invite code to get you free duolingo plus

free-duolingo-plus duolingo account creator that uses your invite code to get yo

Free like Freedom

This is all very much a work in progress! More to come! ( We're working on it though! Stay tuned!) Installation Open an Anaconda Prompt (in Windows, o

MLSpace: Hassle-free machine learning & deep learning development

MLSpace: Hassle-free machine learning & deep learning development

Experimental solutions to selected exercises from the book [Advances in Financial Machine Learning by Marcos Lopez De Prado]

Advances in Financial Machine Learning Exercises Experimental solutions to selected exercises from the book Advances in Financial Machine Learning by

Comments
  • 'Board' object has no attribute 'outcome'

    'Board' object has no attribute 'outcome'

    I just executed python mcts.py and received an error message: 34 0 Traceback (most recent call last): File "mcts.py", line 134, in payout = simulate(node) File "mcts.py", line 63, in simulate while(board.outcome(claim_draw = True) == None): AttributeError: 'Board' object has no attribute 'outcome'

    opened by barvinog 5
  • Invalid Reduction Key auto.

    Invalid Reduction Key auto.

    Thank you for the source code of Chapter 5. I executed python mnx_generateTrainingData.py - OK Then python sup_network.py - OK

    Then I executed python sup_eval.py and got the error :

    Traceback (most recent call last): File "sup_eval.py", line 6, in model = keras.models.load_model("supervised_model.keras") File "/home/barvinog/anaconda3/lib/python3.7/site-packages/keras/engine/saving.py", line 492, in load_wrapper return load_function(*args, **kwargs) File "/home/barvinog/anaconda3/lib/python3.7/site-packages/keras/engine/saving.py", line 584, in load_model model = _deserialize_model(h5dict, custom_objects, compile) File "/home/barvinog/anaconda3/lib/python3.7/site-packages/keras/engine/saving.py", line 369, in _deserialize_model sample_weight_mode=sample_weight_mode) File "/home/barvinog/anaconda3/lib/python3.7/site-packages/keras/backend/tensorflow_backend.py", line 75, in symbolic_fn_wrapper return func(*args, **kwargs) File "/home/barvinog/anaconda3/lib/python3.7/site-packages/keras/engine/training.py", line 229, in compile self.total_loss = self._prepare_total_loss(masks) File "/home/barvinog/anaconda3/lib/python3.7/site-packages/keras/engine/training.py", line 692, in _prepare_total_loss y_true, y_pred, sample_weight=sample_weight) File "/home/barvinog/anaconda3/lib/python3.7/site-packages/keras/losses.py", line 73, in call losses, sample_weight, reduction=self.reduction) File "/home/barvinog/anaconda3/lib/python3.7/site-packages/keras/utils/losses_utils.py", line 156, in compute_weighted_loss Reduction.validate(reduction) File "/home/barvinog/anaconda3/lib/python3.7/site-packages/keras/utils/losses_utils.py", line 35, in validate raise ValueError('Invalid Reduction Key %s.' % key) ValueError: Invalid Reduction Key auto.

    opened by barvinog 2
  • Chapter 2 convolution.py

    Chapter 2 convolution.py

    Hello Dominik, I'm a Python novice, but an experienced chess player and long ago a developer of software for infinite dimensional optimization. I've installed the latest Python on a 64 cores Ryzen Threadripper with two NVIDIA 3090 graphic cards. I study your very helpful overview of modern chess engine programming and started with Chapter 2 where except convolution.py all examples work fine. I have installed module scikit-image as skimage doesn't load correctly. Then (without changing the source of convolution.py) I get the following warning

    PS C:\Users\diete\Downloads\neural_network_chess-1.3\chapter_02> python.exe .\convolution.py (640, 480) Lossy conversion from float64 to uint8. Range [-377.0, 433.0]. Convert image to uint8 prior to saving to suppress this warning. PS C:\Users\diete\Downloads\neural_network_chess-1.3\chapter_02>

    and after some seconds python exits without any more output. Help with this problem is kindly appreciated. Dieter

    opened by d-kraft 1
Releases(v1.5)
Owner
Dominik Klein
random code snippets, including the chess program Jerry
Dominik Klein
Irrigation controller for Home Assistant

Irrigation Unlimited This integration is for irrigation systems large and small. It can offer some complex arrangements without large and messy script

Robert Cook 176 Jan 02, 2023
For the paper entitled ''A Case Study and Qualitative Analysis of Simple Cross-Lingual Opinion Mining''

Summary This is the source code for the paper "A Case Study and Qualitative Analysis of Simple Cross-Lingual Opinion Mining", which was accepted as fu

1 Nov 10, 2021
The fastai book, published as Jupyter Notebooks

English / Spanish / Korean / Chinese / Bengali / Indonesian The fastai book These notebooks cover an introduction to deep learning, fastai, and PyTorc

fast.ai 17k Jan 07, 2023
Nest - A flexible tool for building and sharing deep learning modules

Nest - A flexible tool for building and sharing deep learning modules Nest is a flexible deep learning module manager, which aims at encouraging code

ZhouYanzhao 41 Oct 10, 2022
A scikit-learn compatible neural network library that wraps PyTorch

A scikit-learn compatible neural network library that wraps PyTorch. Resources Documentation Source Code Examples To see more elaborate examples, look

4.9k Jan 03, 2023
This repo includes the supplementary of our paper "CEMENT: Incomplete Multi-View Weak-Label Learning with Long-Tailed Labels"

Supplementary Materials for CEMENT: Incomplete Multi-View Weak-Label Learning with Long-Tailed Labels This repository includes all supplementary mater

Zhiwei Li 0 Jan 05, 2022
Official implementation of UTNet: A Hybrid Transformer Architecture for Medical Image Segmentation

UTNet (Accepted at MICCAI 2021) Official implementation of UTNet: A Hybrid Transformer Architecture for Medical Image Segmentation Introduction Transf

110 Jan 01, 2023
以孤立语假设和宽度优先搜索为基础,构建了一种多通道堆叠注意力Transformer结构的斗地主ai

ddz-ai 介绍 斗地主是一种扑克游戏。游戏最少由3个玩家进行,用一副54张牌(连鬼牌),其中一方为地主,其余两家为另一方,双方对战,先出完牌的一方获胜。 ddz-ai以孤立语假设和宽度优先搜索为基础,构建了一种多通道堆叠注意力Transformer结构的系统,使其经过大量训练后,能在实际游戏中获

freefuiiismyname 88 May 15, 2022
Official pytorch implementation of paper "Inception Convolution with Efficient Dilation Search" (CVPR 2021 Oral).

IC-Conv This repository is an official implementation of the paper Inception Convolution with Efficient Dilation Search. Getting Started Download Imag

Jie Liu 111 Dec 31, 2022
​TextWorld is a sandbox learning environment for the training and evaluation of reinforcement learning (RL) agents on text-based games.

TextWorld A text-based game generator and extensible sandbox learning environment for training and testing reinforcement learning (RL) agents. Also ch

Microsoft 983 Dec 23, 2022
Codebase of deep learning models for inferring stability of mRNA molecules

Kaggle OpenVaccine Models Codebase of deep learning models for inferring stability of mRNA molecules, corresponding to the Kaggle Open Vaccine Challen

Eternagame 40 Dec 29, 2022
Pytorch implementation of the paper Improving Text-to-Image Synthesis Using Contrastive Learning

T2I_CL This is the official Pytorch implementation of the paper Improving Text-to-Image Synthesis Using Contrastive Learning Requirements Linux Python

42 Dec 31, 2022
Lexical Substitution Framework

LexSubGen Lexical Substitution Framework This repository contains the code to reproduce the results from the paper: Arefyev Nikolay, Sheludko Boris, P

Samsung 37 Sep 15, 2022
High performance distributed framework for training deep learning recommendation models based on PyTorch.

PERSIA (Parallel rEcommendation tRaining System with hybrId Acceleration) is developed by AI 340 Dec 30, 2022

An End-to-End Machine Learning Library to Optimize AUC (AUROC, AUPRC).

Logo by Zhuoning Yuan LibAUC: A Machine Learning Library for AUC Optimization Website | Updates | Installation | Tutorial | Research | Github LibAUC a

Optimization for AI 176 Jan 07, 2023
HandTailor: Towards High-Precision Monocular 3D Hand Recovery

HandTailor This repository is the implementation code and model of the paper "HandTailor: Towards High-Precision Monocular 3D Hand Recovery" (arXiv) G

Lv Jun 113 Jan 06, 2023
pytorch implementation of the ICCV'21 paper "MVTN: Multi-View Transformation Network for 3D Shape Recognition"

MVTN: Multi-View Transformation Network for 3D Shape Recognition (ICCV 2021) By Abdullah Hamdi, Silvio Giancola, Bernard Ghanem Paper | Video | Tutori

Abdullah Hamdi 64 Jan 03, 2023
CountDown to New Year and shoot fireworks

CountDown and Shoot Fireworks About App This is an small application make you re

5 Dec 31, 2022
PArallel Distributed Deep LEarning: Machine Learning Framework from Industrial Practice (『飞桨』核心框架,深度学习&机器学习高性能单机、分布式训练和跨平台部署)

English | 简体中文 Welcome to the PaddlePaddle GitHub. PaddlePaddle, as the only independent R&D deep learning platform in China, has been officially open

19.4k Jan 04, 2023