Graph WaveNet apdapted for brain connectivity analysis.

Overview

Graph WaveNet for brain network analysis

This is the implementation of the Graph WaveNet model used in our manuscript:

S. Wein , A. Schüller, A. M. Tome, W. M. Malloni, M. W. Greenlee, and E. W. Lang, Modeling Spatio-Temporal Dynamics in Brain Networks: A Comparison of Graph Neural Network Architectures.

The implementation is based on the Graph WaveNet proposed by:

Z. Wu, S. Pan, G. Long, J. Jiang, C. Zhang, Graph WaveNet for Deep Spatial-Temporal Graph Modeling, IJCAI 2019.

Requirements

  • pytroch>=1.00
  • scipy>=0.19.0
  • numpy>=1.12.1

Also a conda environment.yml file is provided. The environment can be installed with:

conda env create -f environment.yml

Run demo version

A short demo version is included in this repository, which can serve as a template to process your own MRI data. Artificial fMRI data is provided in the directory MRI_data/fMRI_sessions/ and the artificial timecourses have the shape (nodes,time). The adjacency matrix in form of the structural connectivity (SC) between brain regions can be stored in MRI_data/SC_matrix/. An artificial SC matrix with shape (nodes,nodes) is also provided in this demo version.

The training samples can be generated from the subject session data by running:

python generate_samples.py --input_dir=./MRI_data/fMRI_sessions/ --output_dir=./MRI_data/training_samples

The model can then be trained by running:

python gwn_for_brain_connectivity_train.py --data ./MRI_data/training_samples --save_predictions True

A Jupyter Notebook version is provided, which can be directly run in Google Colab with:

https://colab.research.google.com/github/simonvino/GraphWaveNet_brain_connectivity/blob/main/gwn_for_brain_connectivity_colab_demo.ipynb

Data availability

Preprocessed fMRI and DTI data from Human Connectome Project data is publicly available under: https://db.humanconnectome.org.

A nice tutorial on white matter tracktography for creating a SC matrix is available under: https://osf.io/fkyht/.

Citations

Our arXiv manuscript can be cited as:

@misc{Wein2021GNNs_bc,
      title={Modeling Spatio-Temporal Dynamics in Brain Networks: A Comparison of Graph Neural Network Architectures}, 
      author={Simon Wein and Alina Schüller and Ana Maria Tomé and Wilhelm M. Malloni and Mark W. Greenlee and Elmar W. Lang},
      year={2021},
      eprint={2112.04266},
      archivePrefix={arXiv},
      primaryClass={q-bio.NC}
}

And the model architecture was originally proposed by Wu et al.:

@inproceedings{Wu2019_GWN_traffic,
  title={Graph WaveNet for Deep Spatial-Temporal Graph Modeling},
  author={Wu, Zonghan and Pan, Shirui and Long, Guodong and Jiang, Jing and Zhang, Chengqi},
  booktitle={Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)},
  year={2019}
}
'Aligned mixture of latent dynamical systems' (amLDS) for stimulus decoding probabilistic manifold alignment across animals. P. Herrero-Vidal et al. NeurIPS 2021 code.

Across-animal odor decoding by probabilistic manifold alignment (NeurIPS 2021) This repository is the official implementation of aligned mixture of la

Pedro Herrero-Vidal 3 Jul 12, 2022
PyTorch implementation of deep GRAph Contrastive rEpresentation learning (GRACE).

GRACE The official PyTorch implementation of deep GRAph Contrastive rEpresentation learning (GRACE). For a thorough resource collection of self-superv

Big Data and Multi-modal Computing Group, CRIPAC 186 Dec 27, 2022
TGS Salt Identification Challenge

TGS Salt Identification Challenge This is an open solution to the TGS Salt Identification Challenge. Note Unfortunately, we can no longer provide supp

neptune.ai 123 Nov 04, 2022
FID calculation with proper image resizing and quantization steps

clean-fid: Fixing Inconsistencies in FID Project | Paper The FID calculation involves many steps that can produce inconsistencies in the final metric.

Gaurav Parmar 606 Jan 06, 2023
Benchmark VAE - Library for Variational Autoencoder benchmarking

Documentation pythae This library implements some of the most common (Variational) Autoencoder models. In particular it provides the possibility to pe

1.1k Jan 02, 2023
TLXZoo - Pre-trained models based on TensorLayerX

Pre-trained models based on TensorLayerX. TensorLayerX is a multi-backend AI fra

TensorLayer Community 13 Dec 07, 2022
This is the official code of our paper "Diversity-based Trajectory and Goal Selection with Hindsight Experience Relay" (PRICAI 2021)

Diversity-based Trajectory and Goal Selection with Hindsight Experience Replay This is the official implementation of our paper "Diversity-based Traje

Tianhong Dai 6 Jul 18, 2022
This project is for a Twitter bot that monitors a bird feeder in my backyard. Any detected birds are identified and posted to Twitter.

Backyard Birdbot Introduction This is a silly hobby project to use existing ML models to: Detect any birds sighted by a webcam Identify whic

Chi Young Moon 71 Dec 25, 2022
FIRA: Fine-Grained Graph-Based Code Change Representation for Automated Commit Message Generation

FIRA is a learning-based commit message generation approach, which first represents code changes via fine-grained graphs and then learns to generate commit messages automatically.

Van 21 Dec 30, 2022
ProMP: Proximal Meta-Policy Search

ProMP: Proximal Meta-Policy Search Implementations corresponding to ProMP (Rothfuss et al., 2018). Overall this repository consists of two branches: m

Jonas Rothfuss 212 Dec 20, 2022
Pytorch implementation for "Open Compound Domain Adaptation" (CVPR 2020 ORAL)

Open Compound Domain Adaptation [Project] [Paper] [Demo] [Blog] Overview Open Compound Domain Adaptation (OCDA) is the author's re-implementation of t

Zhongqi Miao 137 Dec 15, 2022
Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis

Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Website | ICCV paper | arXiv | Twitter This repository contains the official i

Ajay Jain 73 Dec 27, 2022
Unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners

Unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners This repository is built upon BEiT, thanks very much! Now, we on

Zhiliang Peng 2.3k Jan 04, 2023
Code repository for paper `Skeleton Merger: an Unsupervised Aligned Keypoint Detector`.

Skeleton Merger Skeleton Merger, an Unsupervised Aligned Keypoint Detector. The paper is available at https://arxiv.org/abs/2103.10814. A map of the r

北海若 48 Nov 14, 2022
This project uses Template Matching technique for object detecting by detection of template image over base image.

Object Detection Project Using OpenCV This project uses Template Matching technique for object detecting by detection the template image over base ima

Pratham Bhatnagar 7 May 29, 2022
Mask2Former: Masked-attention Mask Transformer for Universal Image Segmentation in TensorFlow 2

Mask2Former: Masked-attention Mask Transformer for Universal Image Segmentation in TensorFlow 2 Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexan

Phan Nguyen 1 Dec 16, 2021
Towards Rolling Shutter Correction and Deblurring in Dynamic Scenes (CVPR2021)

RSCD (BS-RSCD & JCD) Towards Rolling Shutter Correction and Deblurring in Dynamic Scenes (CVPR2021) by Zhihang Zhong, Yinqiang Zheng, Imari Sato We co

81 Dec 15, 2022
PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

Yulun Zhang 1.2k Dec 26, 2022
Finite-temperature variational Monte Carlo calculation of uniform electron gas using neural canonical transformation.

CoulombGas This code implements the neural canonical transformation approach to the thermodynamic properties of uniform electron gas. Building on JAX,

FermiFlow 9 Mar 03, 2022
FL-WBC: Enhancing Robustness against Model Poisoning Attacks in Federated Learning from a Client Perspective

FL-WBC: Enhancing Robustness against Model Poisoning Attacks in Federated Learning from a Client Perspective Official implementation of "FL-WBC: Enhan

Jingwei Sun 26 Nov 28, 2022