Graph WaveNet apdapted for brain connectivity analysis.

Overview

Graph WaveNet for brain network analysis

This is the implementation of the Graph WaveNet model used in our manuscript:

S. Wein , A. Schüller, A. M. Tome, W. M. Malloni, M. W. Greenlee, and E. W. Lang, Modeling Spatio-Temporal Dynamics in Brain Networks: A Comparison of Graph Neural Network Architectures.

The implementation is based on the Graph WaveNet proposed by:

Z. Wu, S. Pan, G. Long, J. Jiang, C. Zhang, Graph WaveNet for Deep Spatial-Temporal Graph Modeling, IJCAI 2019.

Requirements

  • pytroch>=1.00
  • scipy>=0.19.0
  • numpy>=1.12.1

Also a conda environment.yml file is provided. The environment can be installed with:

conda env create -f environment.yml

Run demo version

A short demo version is included in this repository, which can serve as a template to process your own MRI data. Artificial fMRI data is provided in the directory MRI_data/fMRI_sessions/ and the artificial timecourses have the shape (nodes,time). The adjacency matrix in form of the structural connectivity (SC) between brain regions can be stored in MRI_data/SC_matrix/. An artificial SC matrix with shape (nodes,nodes) is also provided in this demo version.

The training samples can be generated from the subject session data by running:

python generate_samples.py --input_dir=./MRI_data/fMRI_sessions/ --output_dir=./MRI_data/training_samples

The model can then be trained by running:

python gwn_for_brain_connectivity_train.py --data ./MRI_data/training_samples --save_predictions True

A Jupyter Notebook version is provided, which can be directly run in Google Colab with:

https://colab.research.google.com/github/simonvino/GraphWaveNet_brain_connectivity/blob/main/gwn_for_brain_connectivity_colab_demo.ipynb

Data availability

Preprocessed fMRI and DTI data from Human Connectome Project data is publicly available under: https://db.humanconnectome.org.

A nice tutorial on white matter tracktography for creating a SC matrix is available under: https://osf.io/fkyht/.

Citations

Our arXiv manuscript can be cited as:

@misc{Wein2021GNNs_bc,
      title={Modeling Spatio-Temporal Dynamics in Brain Networks: A Comparison of Graph Neural Network Architectures}, 
      author={Simon Wein and Alina Schüller and Ana Maria Tomé and Wilhelm M. Malloni and Mark W. Greenlee and Elmar W. Lang},
      year={2021},
      eprint={2112.04266},
      archivePrefix={arXiv},
      primaryClass={q-bio.NC}
}

And the model architecture was originally proposed by Wu et al.:

@inproceedings{Wu2019_GWN_traffic,
  title={Graph WaveNet for Deep Spatial-Temporal Graph Modeling},
  author={Wu, Zonghan and Pan, Shirui and Long, Guodong and Jiang, Jing and Zhang, Chengqi},
  booktitle={Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)},
  year={2019}
}
Training deep models using anime, illustration images.

animeface deep models for anime images. Datasets anime-face-dataset Anime faces collected from Getchu.com. Based on Mckinsey666's dataset. 63.6K image

Tomoya Sawada 61 Dec 25, 2022
A repository for generating stylized talking 3D and 3D face

style_avatar A repository for generating stylized talking 3D faces and 2D videos. This is the repository for paper Imitating Arbitrary Talking Style f

Haozhe Wu 191 Dec 22, 2022
Noether Networks: meta-learning useful conserved quantities

Noether Networks: meta-learning useful conserved quantities This repository contains the code necessary to reproduce experiments from "Noether Network

Dylan Doblar 33 Nov 23, 2022
PyTorch Code for the paper "VSE++: Improving Visual-Semantic Embeddings with Hard Negatives"

Improving Visual-Semantic Embeddings with Hard Negatives Code for the image-caption retrieval methods from VSE++: Improving Visual-Semantic Embeddings

Fartash Faghri 441 Dec 05, 2022
UMich 500-Level Mobile Robotics Course

MOBILE ROBOTICS: METHODS & ALGORITHMS - WINTER 2022 University of Michigan - NA 568/EECS 568/ROB 530 For slides, lecture notes, and example codes, see

393 Dec 29, 2022
gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks.

gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks. It is built on top of the OpenAI G

Robin Henry 99 Dec 12, 2022
Face recognition. Redefined.

FaceFinder Use a powerful CNN to identify faces in images! TABLE OF CONTENTS About The Project Built With Getting Started Prerequisites Installation U

BleepLogger 20 Jun 16, 2021
Locally Most Powerful Bayesian Test for Out-of-Distribution Detection using Deep Generative Models

LMPBT Supplementary code for the Paper entitled ``Locally Most Powerful Bayesian Test for Out-of-Distribution Detection using Deep Generative Models"

1 Sep 29, 2022
Code + pre-trained models for the paper Keeping Your Eye on the Ball Trajectory Attention in Video Transformers

Motionformer This is an official pytorch implementation of paper Keeping Your Eye on the Ball: Trajectory Attention in Video Transformers. In this rep

Facebook Research 192 Dec 23, 2022
A Domain-Agnostic Benchmark for Self-Supervised Learning

DABS: A Domain Agnostic Benchmark for Self-Supervised Learning This repository contains the code for DABS, a benchmark for domain-agnostic self-superv

Alex Tamkin 81 Dec 09, 2022
Generate Contextual Directory Wordlist For Target Org

PathPermutor Generate Contextual Directory Wordlist For Target Org This script generates contextual wordlist for any target org based on the set of UR

8 Jun 23, 2021
Yolov5 + Deep Sort with PyTorch

딥소트 수정중 Yolov5 + Deep Sort with PyTorch Introduction This repository contains a two-stage-tracker. The detections generated by YOLOv5, a family of obj

1 Nov 26, 2021
Much faster than SORT(Simple Online and Realtime Tracking), a little worse than SORT

QSORT QSORT(Quick + Simple Online and Realtime Tracking) is a simple online and realtime tracking algorithm for 2D multiple object tracking in video s

Yonghye Kwon 8 Jul 27, 2022
Learning Energy-Based Models by Diffusion Recovery Likelihood

Learning Energy-Based Models by Diffusion Recovery Likelihood Ruiqi Gao, Yang Song, Ben Poole, Ying Nian Wu, Diederik P. Kingma Paper: https://arxiv.o

Ruiqi Gao 41 Nov 22, 2022
[CVPR 2022 Oral] TubeDETR: Spatio-Temporal Video Grounding with Transformers

TubeDETR: Spatio-Temporal Video Grounding with Transformers Website • STVG Demo • Paper This repository provides the code for our paper. This includes

Antoine Yang 108 Dec 27, 2022
Code that accompanies the paper Semi-supervised Deep Kernel Learning: Regression with Unlabeled Data by Minimizing Predictive Variance

Semi-supervised Deep Kernel Learning This is the code that accompanies the paper Semi-supervised Deep Kernel Learning: Regression with Unlabeled Data

58 Oct 26, 2022
Data Preparation, Processing, and Visualization for MoVi Data

MoVi-Toolbox Data Preparation, Processing, and Visualization for MoVi Data, https://www.biomotionlab.ca/movi/ MoVi is a large multipurpose dataset of

Saeed Ghorbani 51 Nov 27, 2022
A simple but complete full-attention transformer with a set of promising experimental features from various papers

x-transformers A concise but fully-featured transformer, complete with a set of promising experimental features from various papers. Install $ pip ins

Phil Wang 2.3k Jan 03, 2023
Code for the ICML 2021 paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision"

ViLT Code for the paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision" Install pip install -r requirements.txt pip

Wonjae Kim 922 Jan 01, 2023
📚 A collection of Jupyter notebooks for learning and experimenting with OpenVINO 👓

A collection of ready-to-run Python* notebooks for learning and experimenting with OpenVINO developer tools. The notebooks are meant to provide an introduction to OpenVINO basics and teach developers

OpenVINO Toolkit 840 Jan 03, 2023