MLOps pipeline project using Amazon SageMaker Pipelines

Overview

Welcome to MLOps pipeline project using Amazon SageMaker Pipelines

This project utilizes SageMaker Pipelines that offers machine learning (ML) application developers and operations engineers the ability to orchestrate SageMaker jobs and author reproducible ML pipelines. It enables users to deploy custom-build models for batch and real-time inference with low latency and track lineage of artifacts.

Key Hightlights:
--Visual map to monitor end to end data and ML pipeline progress
--Model Registry to main different model versions and associated metadata
--Access to SageMaker processing jobs to scale/distribute workloads across multiple instances
--Inbuilt workflow orchestration without the need to leverage Step Functions etc
--Human review component
--Model drift detection

Code Layout

|-- data/        --> data file for inference purpose
|-- infra/       --> This folder contains helper function to create iam roles, policies
|-- README.md    --> The summary file of this project
|-- img/         --> images
|-- RegMLNB/     --> This folder contains files for data prep, model training, deployment and inference, model monitoring etc   
|-- pipeline.py  --> This file contain orchestration pipeline for data prep, model training,inference
|-- lambda_deployer.py --> Lambda function to create an endpoint
|-- requirements.txt --> This file contains project dependencies

Architecture Diagram

arch-diag

Data

fake_train_data.csv - This file has a randomly generated dataset, using Pythons random package. All labels and probability percentages are from a random number generator. It's used as a proof of concept for setting train set baseline statistics.

Get Started

This project is templatized with Amazon CDK. The cdk.json file tells the CDK Toolkit how to execute your app.

This project is set up like a standard Python project. The initialization process also creates a virtualenv within this project, stored under the .venv directory. To create the virtualenv it assumes that there is a python3 executable in your path with access to the venv package. If for any reason the automatic creation of the virtualenv fails, you can create the virtualenv manually once the init process completes.

To manually create a virtualenv on MacOS and Linux:

python3 -m venv .venv

After the init process completes and the virtualenv is created, you can use the following step to activate your virtualenv.

$ source .venv/bin/activate

Once the virtualenv is activated, you can install the required dependencies.

pip install -r requirements.txt

At this point you can now synthesize the CloudFormation template for this code.

cdk synth
cdk deploy --all --outputs-file ./cdk-outputs.json

or you can also deploy the stack by running : cdk deploy regml-stack --outputs-file ./cdk-outputs.json

Note: The output file parameter will automate the transfer of your created IAM role ARN to pipeline.py.

Once the stack is created, run the following command:

python pipeline.py

To add additional dependencies, for example other CDK libraries, just add to your requirements.txt file and rerun the pip install -r requirements.txt command.

Useful commands

`cdk ls` list all stacks in the app
`cdk synth` emits the synthesized CloudFormation template
`cdk deploy` deploy this stack to your default AWS account/region
`cdk diff` compare deployed stack with current state
`cdk docs` open CDK documentation

Security

See CONTRIBUTING for more information.

License

This library is licensed under the MIT-0 License. See the LICENSE file.

Owner
AWS Samples
AWS Samples
Made in collaboration with Chris George for Art + ML Spring 2019.

Deepdream Eyes Made in collaboration with Chris George for Art + ML Spring 2019.

Francisco Cabrera 1 Jan 12, 2022
MICOM is a Python package for metabolic modeling of microbial communities

Welcome MICOM is a Python package for metabolic modeling of microbial communities currently developed in the Gibbons Lab at the Institute for Systems

57 Dec 21, 2022
Quantum Machine Learning

The Machine Learning package simply contains sample datasets at present. It has some classification algorithms such as QSVM and VQC (Variational Quantum Classifier), where this data can be used for e

Qiskit 364 Jan 08, 2023
Decentralized deep learning in PyTorch. Built to train models on thousands of volunteers across the world.

Hivemind: decentralized deep learning in PyTorch Hivemind is a PyTorch library to train large neural networks across the Internet. Its intended usage

1.3k Jan 08, 2023
Implemented four supervised learning Machine Learning algorithms

Implemented four supervised learning Machine Learning algorithms from an algorithmic family called Classification and Regression Trees (CARTs), details see README_Report.

Teng (Elijah) Xue 0 Jan 31, 2022
Solve automatic numerical differentiation problems in one or more variables.

numdifftools The numdifftools library is a suite of tools written in _Python to solve automatic numerical differentiation problems in one or more vari

Per A. Brodtkorb 181 Dec 16, 2022
Bayesian optimization based on Gaussian processes (BO-GP) for CFD simulations.

BO-GP Bayesian optimization based on Gaussian processes (BO-GP) for CFD simulations. The BO-GP codes are developed using GPy and GPyOpt. The optimizer

KTH Mechanics 8 Mar 31, 2022
Credit Card Fraud Detection, used the credit card fraud dataset from Kaggle

Credit Card Fraud Detection, used the credit card fraud dataset from Kaggle

Sean Zahller 1 Feb 04, 2022
AtsPy: Automated Time Series Models in Python (by @firmai)

Automated Time Series Models in Python (AtsPy) SSRN Report Easily develop state of the art time series models to forecast univariate data series. Simp

Derek Snow 465 Jan 02, 2023
A repository to index and organize the latest machine learning courses found on YouTube.

📺 ML YouTube Courses At DAIR.AI we ❤️ open education. We are excited to share some of the best and most recent machine learning courses available on

DAIR.AI 9.6k Jan 01, 2023
Implementation of linesearch Optimization Algorithms in Python

Nonlinear Optimization Algorithms During my time as Scientific Assistant at the Karlsruhe Institute of Technology (Germany) I implemented various Opti

Paul 3 Dec 06, 2022
A logistic regression model for health insurance purchasing prediction

Logistic_Regression_Model A logistic regression model for health insurance purchasing prediction This code is using these packages, so please make sur

ShawnWang 1 Nov 29, 2021
Client - 🔥 A tool for visualizing and tracking your machine learning experiments

Weights and Biases Use W&B to build better models faster. Track and visualize all the pieces of your machine learning pipeline, from datasets to produ

Weights & Biases 5.2k Jan 03, 2023
Tutorials, examples, collections, and everything else that falls into the categories: pattern classification, machine learning, and data mining

**Tutorials, examples, collections, and everything else that falls into the categories: pattern classification, machine learning, and data mining.** S

Sebastian Raschka 4k Dec 30, 2022
A toolkit for making real world machine learning and data analysis applications in C++

dlib C++ library Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real worl

Davis E. King 11.6k Jan 02, 2023
Machine Learning Study 혼자 해보기

Machine Learning Study 혼자 해보기 기여자 (Contributors) ✨ Teddy Lee 🏠 HongJaeKwon 🏠 Seungwoo Han 🏠 Tae Heon Kim 🏠 Steve Kwon 🏠 SW Song 🏠 K1A2 🏠 Wooil

Teddy Lee 1.7k Jan 01, 2023
Generate music from midi files using BPE and markov model

Generate music from midi files using BPE and markov model

Aditya Khadilkar 37 Oct 24, 2022
Xeasy-ml is a packaged machine learning framework.

xeasy-ml 1. What is xeasy-ml Xeasy-ml is a packaged machine learning framework. It allows a beginner to quickly build a machine learning model and use

9 Mar 14, 2022
Sleep stages are classified with the help of ML. We have used 4 different ML algorithms (SVM, KNN, RF, NN) to demonstrate them

Sleep stages are classified with the help of ML. We have used 4 different ML algorithms (SVM, KNN, RF, NN) to demonstrate them.

Anirudh Edpuganti 3 Apr 03, 2022
Kaggler is a Python package for lightweight online machine learning algorithms and utility functions for ETL and data analysis.

Kaggler is a Python package for lightweight online machine learning algorithms and utility functions for ETL and data analysis. It is distributed under the MIT License.

Jeong-Yoon Lee 720 Dec 25, 2022