A collection of machine learning examples and tutorials.

Overview

machine_learning_examples

A collection of machine learning examples and tutorials.

Find associated tutorials at https://lazyprogrammer.me

Find associated courses at https://deeplearningcourses.com

Please note that not all code from all courses will be found in this repository. Some newer code examples (e.g. most of Tensorflow 2.0) were done in Google Colab. Therefore, you should check the instructions given in the lectures for the course you are taking.

How to I find the code for a particular course?

The code for each course is separated by folder. You can determine which folder corresponds with which course by watching the "Where to get the code" lecture inside the course (usually Lecture 2 or 3).

Remember: one folder = one course.

Why you should not fork this repo

I've noticed that many people have out-of-date forks. Thus, I recommend not forking this repository if you take one of my courses. I am constantly updating my courses, and your fork will soon become out-of-date. You should clone the repository instead to make it easy to get updates (i.e. just "git pull" randomly and frequently).

Where is the code for your latest courses?

Beginning with Tensorflow 2, I started to use Google Colab. For those courses, unless otherwise noted, the code will be on Google Colab. Links to the notebooks are provided in the course. See the lecture "Where to get the code" for further details.

VIP Course Links

*** Note: if any of these coupons becomes out of date, check my website (https://lazyprogrammer.me) for the latest version. I will probably just keep incrementing them numerically, e.g. FINANCEVIP2, FINANCEVIP3, etc..

Time Series Analysis, Forecasting, and Machine Learning

https://www.udemy.com/course/time-series-analysis/?couponCode=TIMEVIP4

Financial Engineering and Artificial Intelligence in Python

https://www.udemy.com/course/ai-finance/?couponCode=FINANCEVIP13

PyTorch: Deep Learning and Artificial Intelligence

https://www.udemy.com/course/pytorch-deep-learning/?couponCode=PYTORCHVIP18

Tensorflow 2.0: Deep Learning and Artificial Intelligence (VIP Version) https://deeplearningcourses.com/c/deep-learning-tensorflow-2

Deep Learning Courses Exclusives

Classical Statistical Inference and A/B Testing in Python https://deeplearningcourses.com/c/statistical-inference-in-python

Linear Programming for Linear Regression in Python https://deeplearningcourses.com/c/linear-programming-python

MATLAB for Students, Engineers, and Professionals in STEM https://deeplearningcourses.com/c/matlab

Other Course Links

Tensorflow 2.0: Deep Learning and Artificial Intelligence (non-VIP version) https://www.udemy.com/course/deep-learning-tensorflow-2/?referralCode=E10B72D3848AB70FE1B8

Cutting-Edge AI: Deep Reinforcement Learning in Python https://deeplearningcourses.com/c/cutting-edge-artificial-intelligence

Recommender Systems and Deep Learning in Python https://deeplearningcourses.com/c/recommender-systems

Machine Learning and AI: Support Vector Machines in Python https://deeplearningcourses.com/c/support-vector-machines-in-python

Deep Learning: Advanced Computer Vision https://deeplearningcourses.com/c/advanced-computer-vision

Deep Learning: Advanced NLP and RNNs https://deeplearningcourses.com/c/deep-learning-advanced-nlp

Deep Learning: GANs and Variational Autoencoders https://deeplearningcourses.com/c/deep-learning-gans-and-variational-autoencoders

Advanced AI: Deep Reinforcement Learning in Python https://deeplearningcourses.com/c/deep-reinforcement-learning-in-python

Artificial Intelligence: Reinforcement Learning in Python https://deeplearningcourses.com/c/artificial-intelligence-reinforcement-learning-in-python

Natural Language Processing with Deep Learning in Python https://deeplearningcourses.com/c/natural-language-processing-with-deep-learning-in-python

Deep Learning: Recurrent Neural Networks in Python https://deeplearningcourses.com/c/deep-learning-recurrent-neural-networks-in-python

Unsupervised Machine Learning: Hidden Markov Models in Python https://deeplearningcourses.com/c/unsupervised-machine-learning-hidden-markov-models-in-python

Deep Learning Prerequisites: The Numpy Stack in Python https://deeplearningcourses.com/c/deep-learning-prerequisites-the-numpy-stack-in-python

Deep Learning Prerequisites: Linear Regression in Python https://deeplearningcourses.com/c/data-science-linear-regression-in-python

Deep Learning Prerequisites: Logistic Regression in Python https://deeplearningcourses.com/c/data-science-logistic-regression-in-python

Deep Learning in Python https://deeplearningcourses.com/c/data-science-deep-learning-in-python

Cluster Analysis and Unsupervised Machine Learning in Python https://deeplearningcourses.com/c/cluster-analysis-unsupervised-machine-learning-python

Data Science: Supervised Machine Learning in Python https://deeplearningcourses.com/c/data-science-supervised-machine-learning-in-python

Bayesian Machine Learning in Python: A/B Testing https://deeplearningcourses.com/c/bayesian-machine-learning-in-python-ab-testing

Easy Natural Language Processing in Python https://deeplearningcourses.com/c/data-science-natural-language-processing-in-python

Practical Deep Learning in Theano and TensorFlow https://deeplearningcourses.com/c/data-science-deep-learning-in-theano-tensorflow

Ensemble Machine Learning in Python: Random Forest and AdaBoost https://deeplearningcourses.com/c/machine-learning-in-python-random-forest-adaboost

Deep Learning: Convolutional Neural Networks in Python https://deeplearningcourses.com/c/deep-learning-convolutional-neural-networks-theano-tensorflow

Unsupervised Deep Learning in Python https://deeplearningcourses.com/c/unsupervised-deep-learning-in-python

Owner
LazyProgrammer.me
https://deeplearningcourses.com
LazyProgrammer.me
Python-based implementations of algorithms for learning on imbalanced data.

ND DIAL: Imbalanced Algorithms Minimalist Python-based implementations of algorithms for imbalanced learning. Includes deep and representational learn

DIAL | Notre Dame 220 Dec 13, 2022
🌲 Implementation of the Robust Random Cut Forest algorithm for anomaly detection on streams

🌲 Implementation of the Robust Random Cut Forest algorithm for anomaly detection on streams

Real-time water systems lab 416 Jan 06, 2023
Implementation of different ML Algorithms from scratch, written in Python 3.x

Implementation of different ML Algorithms from scratch, written in Python 3.x

Gautam J 393 Nov 29, 2022
Python Machine Learning Jupyter Notebooks (ML website)

Python Machine Learning Jupyter Notebooks (ML website) Dr. Tirthajyoti Sarkar, Fremont, California (Please feel free to connect on LinkedIn here) Also

Tirthajyoti Sarkar 2.6k Jan 03, 2023
AutoTabular automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications.

AutoTabular AutoTabular automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just

wenqi 2 Jun 26, 2022
A Tools that help Data Scientists and ML engineers train and deploy ML models.

Domino Research This repo contains projects under active development by the Domino R&D team. We build tools that help Data Scientists and ML engineers

Domino Data Lab 73 Oct 17, 2022
GroundSeg Clustering Optimized Kdtree

ground seg and clustering based on kitti velodyne data, and a additional optimized kdtree for knn and radius nn search

2 Dec 02, 2021
A high performance and generic framework for distributed DNN training

BytePS BytePS is a high performance and general distributed training framework. It supports TensorFlow, Keras, PyTorch, and MXNet, and can run on eith

Bytedance Inc. 3.3k Dec 28, 2022
Stock Price Prediction Bank Jago Using Facebook Prophet Machine Learning & Python

Stock Price Prediction Bank Jago Using Facebook Prophet Machine Learning & Python Overview Bank Jago has attracted investors' attention since the end

Najibulloh Asror 3 Feb 10, 2022
Automated Time Series Forecasting

AutoTS AutoTS is a time series package for Python designed for rapidly deploying high-accuracy forecasts at scale. There are dozens of forecasting mod

Colin Catlin 652 Jan 03, 2023
Interactive Parallel Computing in Python

Interactive Parallel Computing with IPython ipyparallel is the new home of IPython.parallel. ipyparallel is a Python package and collection of CLI scr

IPython 2.3k Dec 30, 2022
neurodsp is a collection of approaches for applying digital signal processing to neural time series

neurodsp is a collection of approaches for applying digital signal processing to neural time series, including algorithms that have been proposed for the analysis of neural time series. It also inclu

NeuroDSP 224 Dec 02, 2022
Projeto: Machine Learning: Linguagens de Programacao 2004-2001

Projeto: Machine Learning: Linguagens de Programacao 2004-2001 Projeto de Data Science e Machine Learning de análise de linguagens de programação de 2

Victor Hugo Negrisoli 0 Jun 29, 2021
AP1 Transcription Factor Binding Site Prediction

A machine learning project that predicted binding sites of AP1 transcription factor, using ChIP-Seq data and local DNA shape information.

1 Jan 21, 2022
A framework for building (and incrementally growing) graph-based data structures used in hierarchical or DAG-structured clustering and nearest neighbor search

A framework for building (and incrementally growing) graph-based data structures used in hierarchical or DAG-structured clustering and nearest neighbor search

Nicholas Monath 31 Nov 03, 2022
Pandas DataFrames and Series as Interactive Tables in Jupyter

Pandas DataFrames and Series as Interactive Tables in Jupyter Star Turn pandas DataFrames and Series into interactive datatables in both your notebook

Marc Wouts 364 Jan 04, 2023
Gaussian Process Optimization using GPy

End of maintenance for GPyOpt Dear GPyOpt community! We would like to acknowledge the obvious. The core team of GPyOpt has moved on, and over the past

Sheffield Machine Learning Software 847 Dec 19, 2022
Solve automatic numerical differentiation problems in one or more variables.

numdifftools The numdifftools library is a suite of tools written in _Python to solve automatic numerical differentiation problems in one or more vari

Per A. Brodtkorb 181 Dec 16, 2022
A Python library for detecting patterns and anomalies in massive datasets using the Matrix Profile

matrixprofile-ts matrixprofile-ts is a Python 2 and 3 library for evaluating time series data using the Matrix Profile algorithms developed by the Keo

Target 696 Dec 26, 2022
Practical Time-Series Analysis, published by Packt

Practical Time-Series Analysis This is the code repository for Practical Time-Series Analysis, published by Packt. It contains all the supporting proj

Packt 325 Dec 23, 2022