NAS-Bench-x11 and the Power of Learning Curves

Overview

NAS-Bench-x11

NAS-Bench-x11 and the Power of Learning Curves
Shen Yan, Colin White, Yash Savani, Frank Hutter.
NeurIPS 2021.

Surrogate NAS benchmarks for multi-fidelity algorithms

We present a method to create surrogate neural architecture search (NAS) benchmarks, NAS-Bench-111, NAS-Bench-311, and NAS-Bench-NLP11, that output the full training information for each architecture, rather than just the final validation accuracy. This makes it possible to benchmark multi-fidelity techniques such as successive halving and learning curve extrapolation (LCE). Then we present a framework for converting popular single-fidelity algorithms into LCE-based algorithms.

nas-bench-x11

Installation

Clone this repository and install its requirements.

git clone https://github.com/automl/nas-bench-x11
cd nas-bench-x11
cat requirements.txt | xargs -n 1 -L 1 pip install
pip install -e .

Download the pretrained surrogate models and place them into checkpoints/. The current models are v0.5. We will continue to improve the surrogate model by adding the sliding window noise model.

NAS-Bench-311 and NAS-Bench-NLP11 will work as is. To use NAS-Bench-111, first install NAS-Bench-101.

Using the API

The api is located in nas_bench_x11/api.py.

Here is an example of how to use the API:

from nas_bench_x11.api import load_ensemble

# load the surrogate
nb311_surrogate_model = load_ensemble('path/to/nb311-v0.5')

# define a genotype as in the original DARTS repository
from collections import namedtuple
Genotype = namedtuple('Genotype', 'normal normal_concat reduce reduce_concat')
arch = Genotype(normal=[('sep_conv_3x3', 0), ('sep_conv_5x5', 1), ('skip_connect', 1), ('max_pool_3x3', 2), ('sep_conv_3x3', 0), ('dil_conv_5x5', 1), ('sep_conv_5x5', 2), ('dil_conv_5x5', 4)], \
                normal_concat=[2, 3, 4, 5, 6], \
                reduce=[('dil_conv_5x5', 0), ('skip_connect', 1), ('avg_pool_3x3', 0), ('sep_conv_5x5', 1), ('avg_pool_3x3', 0), ('max_pool_3x3', 2), ('sep_conv_3x3', 1), ('max_pool_3x3', 3)], \
                reduce_concat=[4, 5, 6])

# query the surrogate to output the learning curve
learning_curve = nb311_surrogate_model.predict(config=arch, representation="genotype", with_noise=True)
print(learning_curve)
# outputs: [34.50166741 44.77032749 50.62796474 ... 93.47724664]

Run NAS experiments from our paper

You will also need to download the nas-bench-301 runtime model lgb_runtime_v1.0 and place it inside a folder called nb_models.

# Supported optimizers: (rs re ls bananas)-{svr, lce}, hb, bohb 

bash naslib/benchmarks/nas/run_nb311.sh 
bash naslib/benchmarks/nas/run_nb201.sh 
bash naslib/benchmarks/nas/run_nb201_cifar100.sh 
bash naslib/benchmarks/nas/run_nb201_imagenet16-200.sh
bash naslib/benchmarks/nas/run_nb111.sh 
bash naslib/benchmarks/nas/run_nbnlp.sh 

Results will be saved in results/.

Citation

@inproceedings{yan2021bench,
  title={NAS-Bench-x11 and the Power of Learning Curves},
  author={Yan, Shen and White, Colin and Savani, Yash and Hutter, Frank},
  booktitle={Thirty-Fifth Conference on Neural Information Processing Systems},
  year={2021}
}
Owner
AutoML-Freiburg-Hannover
AutoML-Freiburg-Hannover
Continual reinforcement learning baselines: experiment specifications, implementation of existing methods, and common metrics. Easily extensible to new methods.

Continual Reinforcement Learning This repository provides a simple way to run continual reinforcement learning experiments in PyTorch, including evalu

55 Dec 24, 2022
This repository contains the code for our fast polygonal building extraction from overhead images pipeline.

Polygonal Building Segmentation by Frame Field Learning We add a frame field output to an image segmentation neural network to improve segmentation qu

Nicolas Girard 186 Jan 04, 2023
😮The official implementation of "CoNeRF: Controllable Neural Radiance Fields" 😮

CoNeRF: Controllable Neural Radiance Fields This is the official implementation for "CoNeRF: Controllable Neural Radiance Fields" Project Page Paper V

Kacper Kania 61 Dec 24, 2022
Official Code Release for Container : Context Aggregation Network

Container: Context Aggregation Network Official Code Release for Container : Context Aggregation Network Comparion between CNN, MLP-Mixer and Transfor

peng gao 42 Nov 17, 2021
Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at [email protected]

TableParser Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at DS3 Lab 11 Dec 13, 2022

Official repository for the paper "Self-Supervised Models are Continual Learners" (CVPR 2022)

Self-Supervised Models are Continual Learners This is the official repository for the paper: Self-Supervised Models are Continual Learners Enrico Fini

Enrico Fini 73 Dec 18, 2022
Making self-supervised learning work on molecules by using their 3D geometry to pre-train GNNs. Implemented in DGL and Pytorch Geometric.

3D Infomax improves GNNs for Molecular Property Prediction Video | Paper We pre-train GNNs to understand the geometry of molecules given only their 2D

Hannes Stärk 95 Dec 30, 2022
CLIP (Contrastive Language–Image Pre-training) trained on Indonesian data

CLIP-Indonesian CLIP (Radford et al., 2021) is a multimodal model that can connect images and text by training a vision encoder and a text encoder joi

Galuh 17 Mar 10, 2022
This repository holds the code for the paper "Deep Conditional Gaussian Mixture Model forConstrained Clustering".

Deep Conditional Gaussian Mixture Model for Constrained Clustering. This repository holds the code for the paper Deep Conditional Gaussian Mixture Mod

17 Oct 30, 2022
Official Implementation of Few-shot Visual Relationship Co-localization

VRC Official implementation of the Few-shot Visual Relationship Co-localization (ICCV 2021) paper project page | paper Requirements Use python = 3.8.

22 Oct 13, 2022
The repository forked from NVlabs uses our data. (Differentiable rasterization applied to 3D model simplification tasks)

nvdiffmodeling [origin_code] Differentiable rasterization applied to 3D model simplification tasks, as described in the paper: Appearance-Driven Autom

Qiujie (Jay) Dong 2 Oct 31, 2022
Official repo for BMVC2021 paper ASFormer: Transformer for Action Segmentation

ASFormer: Transformer for Action Segmentation This repo provides training & inference code for BMVC 2021 paper: ASFormer: Transformer for Action Segme

42 Dec 23, 2022
This repository contains datasets and baselines for benchmarking Chinese text recognition.

Benchmarking-Chinese-Text-Recognition This repository contains datasets and baselines for benchmarking Chinese text recognition. Please see the corres

FudanVI Lab 254 Dec 30, 2022
Self-Supervised Document-to-Document Similarity Ranking via Contextualized Language Models and Hierarchical Inference

Self-Supervised Document Similarity Ranking (SDR) via Contextualized Language Models and Hierarchical Inference This repo is the implementation for SD

Microsoft 36 Nov 28, 2022
Model-free Vehicle Tracking and State Estimation in Point Cloud Sequences

Model-free Vehicle Tracking and State Estimation in Point Cloud Sequences 1. Introduction This project is for paper Model-free Vehicle Tracking and St

TuSimple 92 Jan 03, 2023
Aligning Latent and Image Spaces to Connect the Unconnectable

About This repo contains the official implementation of the Aligning Latent and Image Spaces to Connect the Unconnectable paper. It is a GAN model whi

Ivan Skorokhodov 203 Jan 03, 2023
InferPy: Deep Probabilistic Modeling with Tensorflow Made Easy

InferPy: Deep Probabilistic Modeling Made Easy InferPy is a high-level API for probabilistic modeling written in Python and capable of running on top

PGM-Lab 141 Oct 13, 2022
Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr\"om Method (NeurIPS 2021)

Skyformer This repository is the official implementation of Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr"om Method (NeurIPS 2021).

Qi Zeng 46 Sep 20, 2022
AITUS - An atomatic notr maker for CYTUS

AITUS an automatic note maker for CYTUS. 利用AI根据指定乐曲生成CYTUS游戏谱面。 效果展示:https://www

GradiusTwinbee 6 Feb 24, 2022
A fast, dataset-agnostic, deep visual search engine for digital art history

imgs.ai imgs.ai is a fast, dataset-agnostic, deep visual search engine for digital art history based on neural network embeddings. It utilizes modern

Fabian Offert 5 Dec 14, 2022