KITTI-360 Annotation Tool is a framework that developed based on python(cherrypy + jinja2 + sqlite3) as the server end and javascript + WebGL as the front end.

Overview

KITTI-360 Annotation Tool

KITTI-360 Annotation Tool is a framework that developed based on python(cherrypy + jinja2 + sqlite3) as the server end and javascript + WebGL as the front end. It is the annotation tool used to annotate the KITTI-360(TBD: paper link) dataset.

Dependences

sudo apt install python-pip
pip install jinja2
pip install cherrypy
sudo apt install sqlite3 libsqlite3-dev

Quick Demo

  • Download the data for the demo with the following command:
./download_demo_data.sh
  • Start the web server with the following command:
./run_demo.sh

Demo in Details

1. Setup the data

Prepare data and put it in public/data/, or you can create a symbolic link from where the data is to public/data/

2. Configure user-task assignment

The user and task data is kept in db_import/. Example files have been included in db_import/*.tmp.

  • users.txt

    Each line is one user information in the following order:

    Email Name UserId Password IsAdmin
    
  • taskLists.txt

    Each line is one user-task information in the following order:

    TaskId UserId Editable
    

    where Editable is a number indicating:

    Editable = 0: readonly (User can only view the annotation)

    Editable = 1: normal (User can view, annotate, and submit results)

    Editable = 2: playground (User can view, annotate, but not submit results)

Note: space is not allowed in each item. So use '_' or other characters to connect words

3. Setup database

Once the user/task file is setup based on the above rules, to set up database, run

python create_db.py

4. Setup the host and port address

Setup the host and port address in server.conf, here is an example:

[global]
server.socket_host = "127.0.0.1" # host to be modified
server.socket_port = 8080        # port to be modified (e.g. 2000)

5. Start the server

python labelApp.py

6. Load the web page

Type http://host:port in the browser to load the web page. For example in the demo the web app is started locally in http://127.0.0.1:8080.

7. Play with the labeling interface

Please find details of annotation instruction here.

8. Get annotation results

Annotation results are saved in xml file under public/results/. We provide util functions to parse the xml file in https://github.com/autonomousvision/kitti360Scripts/blob/master/kitti360scripts/helpers/annotation.py#L353.

Folder Structure

.(ROOT)
|
+-- assets
|   |
|   +-- css
|   |
|   +-- javascripts: javascript source code
|
+-- db: generated database (by running create_db.py)
|
+-- db_import
|    |
|    +-- user-task configuration files
|
+-- public
|    |
|    +-- backup: backup XML annotation files, which are automatically saved during annotation
|    |
|    +-- data: annotation data
|    |
|    +-- resource: resource files such as icon
|    |
|    +-- results: resultant XML annotation files
|    |
|    +-- mapping.txt: label mergining file
|    |
|    +-- colorList.txt: label color mapping file
|
+-- views: HTML pages

Common Problems and Solutions

Q1: "socket.error: (98, 'Address already in use')"

A1: Kill the existing processor and re-restart the server. To kill the existing processor:

  1. Run ps aux | grep python in command-line.

  2. Find the PID with user name = annot, and run sudo kill -9 PID.

Citing KITTI-360 Annotation Tool

If you find this code helpful in your research, please use the following BibTeX entry.

@article{Liao2021ARXIV, 
   title   = {{KITTI}-360: A Novel Dataset and Benchmarks for Urban Scene Understanding in 2D and 3D}, 
   author  = {Yiyi Liao and Jun Xie and Andreas Geiger}, 
   journal = {arXiv.org},
   volume  = {2109.13410},
   year    = {2021}, 
}

License


Copyright 2018 Autonomous Vision Group

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.


Transferable Unrestricted Attacks, which won 1st place in CVPR’21 Security AI Challenger: Unrestricted Adversarial Attacks on ImageNet.

Transferable Unrestricted Adversarial Examples This is the PyTorch implementation of the Arxiv paper: Towards Transferable Unrestricted Adversarial Ex

equation 16 Dec 29, 2022
TorchGeo is a PyTorch domain library, similar to torchvision, that provides datasets, transforms, samplers, and pre-trained models specific to geospatial data.

TorchGeo is a PyTorch domain library, similar to torchvision, that provides datasets, transforms, samplers, and pre-trained models specific to geospatial data.

Microsoft 1.3k Dec 30, 2022
Predict and time series avocado hass

RECOMMENDER SYSTEM MARKETING TỔNG QUAN VỀ HỆ THỐNG DỮ LIỆU 1. Giới thiệu - Tiki là một hệ sinh thái thương mại "all in one", trong đó có tiki.vn, là

hieulmsc 3 Jan 10, 2022
Deep universal probabilistic programming with Python and PyTorch

Getting Started | Documentation | Community | Contributing Pyro is a flexible, scalable deep probabilistic programming library built on PyTorch. Notab

7.7k Dec 30, 2022
SwinTrack: A Simple and Strong Baseline for Transformer Tracking

SwinTrack This is the official repo for SwinTrack. A Simple and Strong Baseline Prerequisites Environment conda (recommended) conda create -y -n SwinT

LitingLin 196 Jan 04, 2023
Deep Learning Head Pose Estimation using PyTorch.

Hopenet is an accurate and easy to use head pose estimation network. Models have been trained on the 300W-LP dataset and have been tested on real data with good qualitative performance.

Nataniel Ruiz 1.3k Dec 26, 2022
The project is an official implementation of our CVPR2019 paper "Deep High-Resolution Representation Learning for Human Pose Estimation"

Deep High-Resolution Representation Learning for Human Pose Estimation (CVPR 2019) News [2020/07/05] A very nice blog from Towards Data Science introd

Leo Xiao 3.9k Jan 05, 2023
The source codes for TME-BNA: Temporal Motif-Preserving Network Embedding with Bicomponent Neighbor Aggregation.

TME The source codes for TME-BNA: Temporal Motif-Preserving Network Embedding with Bicomponent Neighbor Aggregation. Our implementation is based on TG

2 Feb 10, 2022
Official Pytorch and JAX implementation of "Efficient-VDVAE: Less is more"

The Official Pytorch and JAX implementation of "Efficient-VDVAE: Less is more" Arxiv preprint Louay Hazami   ·   Rayhane Mama   ·   Ragavan Thurairatn

Rayhane Mama 144 Dec 23, 2022
Kaggleship: Kaggle Notebooks

Kaggleship: Kaggle Notebooks This repository contains my Kaggle notebooks. They are generally about data science, machine learning, and deep learning.

Erfan Sobhaei 1 Jan 25, 2022
Simple Pixelbot for Diablo 2 Resurrected written in python and opencv.

Simple Pixelbot for Diablo 2 Resurrected written in python and opencv. Obviously only use it in offline mode as it is against the TOS of Blizzard to use it in online mode!

468 Jan 03, 2023
This is a simple face recognition mini project that was completed by a team of 3 members in 1 week's time

PeekingDuckling 1. Description This is an implementation of facial identification algorithm to detect and identify the faces of the 3 team members Cla

Eric Kwok 2 Jan 25, 2022
RobustVideoMatting and background composing in one model by using onnxruntime.

RVM_onnx_compose RobustVideoMatting and background composing in one model by using onnxruntime. Usage pip install -r requirements.txt python infer_cam

Quantum Liu 4 Apr 07, 2022
Pytorch Implementation of PointNet and PointNet++++

Pytorch Implementation of PointNet and PointNet++ This repo is implementation for PointNet and PointNet++ in pytorch. Update 2021/03/27: (1) Release p

Luigi Ariano 1 Nov 11, 2021
Learning to Simulate Dynamic Environments with GameGAN (CVPR 2020)

Learning to Simulate Dynamic Environments with GameGAN PyTorch code for GameGAN Learning to Simulate Dynamic Environments with GameGAN Seung Wook Kim,

199 Dec 26, 2022
📝 Wrapper library for text generation / language models at char and word level with RNN in TensorFlow

tensorlm Generate Shakespeare poems with 4 lines of code. Installation tensorlm is written in / for Python 3.4+ and TensorFlow 1.1+ pip3 install tenso

Kilian Batzner 63 May 22, 2021
This is the dataset for testing the robustness of various VO/VIO methods

KAIST VIO dataset This is the dataset for testing the robustness of various VO/VIO methods You can download the whole dataset on KAIST VIO dataset Ind

1 Sep 01, 2022
FastReID is a research platform that implements state-of-the-art re-identification algorithms.

FastReID is a research platform that implements state-of-the-art re-identification algorithms.

JDAI-CV 2.8k Jan 07, 2023
Deep Reinforcement Learning based Trading Agent for Bitcoin

Deep Trading Agent Deep Reinforcement Learning based Trading Agent for Bitcoin using DeepSense Network for Q function approximation. For complete deta

Kartikay Garg 669 Dec 29, 2022
The code for Expectation-Maximization Attention Networks for Semantic Segmentation (ICCV'2019 Oral)

EMANet News The bug in loading the pretrained model is now fixed. I have updated the .pth. To use it, download it again. EMANet-101 gets 80.99 on the

Xia Li 李夏 663 Nov 30, 2022