Educational python for Neural Networks, written in pure Python/NumPy.

Overview

EpyNN

EpyNN is written in pure Python/NumPy.

If you use EpyNN in academia, please cite:

Malard F., Danner L., Rouzies E., Meyer J. G., Lescop E., Olivier-Van Stichelen S. EpyNN: Educational python for Neural Networks, 2021, Submitted.

Documentation

Please visit https://epynn.net/ for extensive documentation.

Purpose

EpyNN is intended for teachers, students, scientists, or more generally anyone with minimal skills in Python programming who wish to understand and build from basic implementations of Neural Network architectures.

Although EpyNN can be used for production, it is meant to be a library of homogeneous architecture templates and practical examples which is expected to save an important amount of time for people who wish to learn, teach or develop from scratch.

Content

EpyNN features scalable, minimalistic and homogeneous implementations of major Neural Network architectures in pure Python/Numpy including:

Model and function rules and definition:

While not enhancing, extending or replacing EpyNN's documentation, series of live examples in Python and Jupyter notebook formats are offered online and within the archive, including:

Reliability

EpyNN has been cross-validated against TensorFlow/Keras API and provides identical results for identical configurations in the limit of float64 precision.

Please see Is EpyNN reliable? for details and executable codes.

Recommended install

  • Linux/MacOS
# Use bash shell
bash

# Clone git repository
git clone https://github.com/Synthaze/EpyNN

# Alternatively, not recommended
# pip3 install EpyNN
# epynn

# Change directory to EpyNN
cd EpyNN

# Install EpyNN dependencies
pip3 install -r requirements.txt

# Export EpyNN path in $PYTHONPATH for current session
export PYTHONPATH=$PYTHONPATH:$PWD

Linux: Permanent export of EpyNN directory path in $PYTHONPATH.

> ~/.bashrc # Source .bashrc to refresh $PYTHONPATH source ~/.bashrc ">
# Append export instruction to the end of .bashrc file
echo "export PYTHONPATH=$PYTHONPATH:$PWD" >> ~/.bashrc

# Source .bashrc to refresh $PYTHONPATH
source ~/.bashrc

MacOS: Permanent export of EpyNN directory path in $PYTHONPATH.

> ~/.bash_profile # Source .bash_profile to refresh $PYTHONPATH source ~/.bash_profile ">
# Append export instruction to the end of .bash_profile file
echo "export PYTHONPATH=$PYTHONPATH:$PWD" >> ~/.bash_profile

# Source .bash_profile to refresh $PYTHONPATH
source ~/.bash_profile
  • Windows
# Clone git repository
git clone https://github.com/Synthaze/EpyNN

# Alternatively, not recommended
# pip3 install EpyNN
# epynn

# Change directory to EpyNN
chdir EpyNN

# Install EpyNN dependencies
pip3 install -r requirements.txt

# Show full path of EpyNN directory
echo %cd%

Copy the full path of EpyNN directory, then go to: Control Panel > System > Advanced > Environment variable

If you already have PYTHONPATH in the User variables section, select it and click Edit, otherwise click New to add it.

Paste the full path of EpyNN directory in the input field, keep in mind that paths in PYTHONPATH should be comma-separated.

ANSI coloring schemes do work on native Windows10 and later. For prior Windows versions, users should configure their environment to work with ANSI coloring schemes for optimal experience.

Current release

1.0 - Initial release

  • nnlibs contains API sources.
  • nnlive contains live examples in Python and Jupyter notebook formats.
  • https://epynn.net/ contains extensive documentation.

See CHANGELOG.md for past releases.

Project tree

nnlibs

nnlive

You might also like...
A concept I came up which ditches the idea of
A concept I came up which ditches the idea of "layers" in a neural network.

Dynet A concept I came up which ditches the idea of "layers" in a neural network. Install Copy Dynet.py to your project. Run the example Install matpl

Python library which makes it possible to dynamically mask/anonymize data using JSON string or python dict rules in a PySpark environment.

pyspark-anonymizer Python library which makes it possible to dynamically mask/anonymize data using JSON string or python dict rules in a PySpark envir

learn python in 100 days, a simple step could be follow from beginner to master of every aspect of python programming and project also include side project which you can use as demo project for your personal portfolio
learn python in 100 days, a simple step could be follow from beginner to master of every aspect of python programming and project also include side project which you can use as demo project for your personal portfolio

learn python in 100 days, a simple step could be follow from beginner to master of every aspect of python programming and project also include side project which you can use as demo project for your personal portfolio

High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

A modular active learning framework for Python
A modular active learning framework for Python

Modular Active Learning framework for Python3 Page contents Introduction Active learning from bird's-eye view modAL in action From zero to one in a fe

A library of extension and helper modules for Python's data analysis and machine learning libraries.
A library of extension and helper modules for Python's data analysis and machine learning libraries.

Mlxtend (machine learning extensions) is a Python library of useful tools for the day-to-day data science tasks. Sebastian Raschka 2014-2021 Links Doc

Sequence learning toolkit for Python

seqlearn seqlearn is a sequence classification toolkit for Python. It is designed to extend scikit-learn and offer as similar as possible an API. Comp

Simple structured learning framework for python

PyStruct PyStruct aims at being an easy-to-use structured learning and prediction library. Currently it implements only max-margin methods and a perce

Python implementation of the rulefit algorithm

RuleFit Implementation of a rule based prediction algorithm based on the rulefit algorithm from Friedman and Popescu (PDF) The algorithm can be used f

Comments
  • update train for images

    update train for images

    better to pick first label of each class programmatically otherwise it can change when then set of images changes. In my nb the indexes you had hardcoded were both class 0

    opened by jgmeyerucsd 1
Releases(v1.2)
Pandas DataFrames and Series as Interactive Tables in Jupyter

Pandas DataFrames and Series as Interactive Tables in Jupyter Star Turn pandas DataFrames and Series into interactive datatables in both your notebook

Marc Wouts 364 Jan 04, 2023
Katana project is a template for ASAP 🚀 ML application deployment

Katana project is a FastAPI template for ASAP 🚀 ML API deployment

Mohammad Shahebaz 100 Dec 26, 2022
MosaicML Composer contains a library of methods, and ways to compose them together for more efficient ML training

MosaicML Composer MosaicML Composer contains a library of methods, and ways to compose them together for more efficient ML training. We aim to ease th

MosaicML 2.8k Jan 06, 2023
Distributed Tensorflow, Keras and PyTorch on Apache Spark/Flink & Ray

A unified Data Analytics and AI platform for distributed TensorFlow, Keras and PyTorch on Apache Spark/Flink & Ray What is Analytics Zoo? Analytics Zo

2.5k Dec 28, 2022
High performance Python GLMs with all the features!

High performance Python GLMs with all the features!

QuantCo 200 Dec 14, 2022
Apache Spark & Python (pySpark) tutorials for Big Data Analysis and Machine Learning as IPython / Jupyter notebooks

Spark Python Notebooks This is a collection of IPython notebook/Jupyter notebooks intended to train the reader on different Apache Spark concepts, fro

Jose A Dianes 1.5k Jan 02, 2023
Lingtrain Alignment Studio is an ML based app for texts alignment on different languages.

Lingtrain Alignment Studio Intro Lingtrain Alignment Studio is the ML based app for accurate texts alignment on different languages. Extracts parallel

Sergei Averkiev 186 Jan 03, 2023
Tutorials, examples, collections, and everything else that falls into the categories: pattern classification, machine learning, and data mining

**Tutorials, examples, collections, and everything else that falls into the categories: pattern classification, machine learning, and data mining.** S

Sebastian Raschka 4k Dec 30, 2022
Time-series momentum for momentum investing strategy

Time-series-momentum Time-series momentum strategy. You can use the data_analysis.py file to find out the best trigger and window for a given asset an

Victor Caldeira 3 Jun 18, 2022
hgboost - Hyperoptimized Gradient Boosting

hgboost is short for Hyperoptimized Gradient Boosting and is a python package for hyperparameter optimization for xgboost, catboost and lightboost using cross-validation, and evaluating the results o

Erdogan Taskesen 34 Jan 03, 2023
An open-source library of algorithms to analyse time series in GPU and CPU.

An open-source library of algorithms to analyse time series in GPU and CPU.

Shapelets 216 Dec 30, 2022
This is an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch

This is an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch. It uses a simple TestEnvironment to test the algorithm

Martin Huber 59 Dec 09, 2022
CD) in machine learning projectsImplementing continuous integration & delivery (CI/CD) in machine learning projects

CML with cloud compute This repository contains a sample project using CML with Terraform (via the cml-runner function) to launch an AWS EC2 instance

Iterative 19 Oct 03, 2022
cleanlab is the data-centric ML ops package for machine learning with noisy labels.

cleanlab is the data-centric ML ops package for machine learning with noisy labels. cleanlab cleans labels and supports finding, quantifying, and lear

Cleanlab 51 Nov 28, 2022
Repositório para o #alurachallengedatascience1

1° Challenge de Dados - Alura A Alura Voz é uma empresa de telecomunicação que nos contratou para atuar como cientistas de dados na equipe de vendas.

Sthe Monica 16 Nov 10, 2022
Apache (Py)Spark type annotations (stub files).

PySpark Stubs A collection of the Apache Spark stub files. These files were generated by stubgen and manually edited to include accurate type hints. T

Maciej 114 Nov 22, 2022
Scikit learn library models to account for data and concept drift.

liquid_scikit_learn Scikit learn library models to account for data and concept drift. This python library focuses on solving data drift and concept d

7 Nov 18, 2021
A Powerful Serverless Analysis Toolkit That Takes Trial And Error Out of Machine Learning Projects

KXY: A Seemless API to 10x The Productivity of Machine Learning Engineers Documentation https://www.kxy.ai/reference/ Installation From PyPi: pip inst

KXY Technologies, Inc. 35 Jan 02, 2023
Open source time series library for Python

PyFlux PyFlux is an open source time series library for Python. The library has a good array of modern time series models, as well as a flexible array

Ross Taylor 2k Jan 02, 2023
ClearML - Auto-Magical Suite of tools to streamline your ML workflow. Experiment Manager, MLOps and Data-Management

ClearML - Auto-Magical Suite of tools to streamline your ML workflow Experiment Manager, MLOps and Data-Management ClearML Formerly known as Allegro T

ClearML 4k Jan 09, 2023