PyTorch implementation of Weak-shot Fine-grained Classification via Similarity Transfer

Overview

SimTrans-Weak-Shot-Classification

This repository contains the official PyTorch implementation of the following paper:

Weak-shot Fine-grained Classification via Similarity Transfer

Junjie Chen, Li Niu, Liu Liu, Liqing Zhang
MoE Key Lab of Artificial Intelligence, Shanghai Jiao Tong University
https://arxiv.org/abs/2009.09197
Accepted by NeurIPS2021.

Abstract

Recognizing fine-grained categories remains a challenging task, due to the subtle distinctions among different subordinate categories, which results in the need of abundant annotated samples. To alleviate the data-hungry problem, we consider the problem of learning novel categories from web data with the support of a clean set of base categories, which is referred to as weak-shot learning. In this setting, we propose to transfer pairwise semantic similarity from base categories to novel categories. Specifically, we firstly train a similarity net on clean data, and then leverage the transferred similarity to denoise web training data using two simple yet effective strategies. In addition, we apply adversarial loss on similarity net to enhance the transferability of similarity. Comprehensive experiments on three fine-grained datasets demonstrate the effectiveness of our setting and method.

1. Setting

In practice, we often have a set of base categories with sufficient well-labeled data, and the problem is how to learn novel categories with less expense, in which base categories and novel categories have no overlap. Such problem motivates zero-shot learning, few-shot learning, as well as our setting. To bridge the gap between base categories and novel categories, zero-shot learning requires category-level semantic representation for all categories, while few-shot learning requires a few clean examples for novel categories. Considering the drawbacks of zero/few-shot learning and the accessibility of free web data, we intend to learn novel categories by virtue of web data with the support of a clean set of base categories.

2. Our Method

Specifically, our framework consists of two training phases. Firstly, we train a similarity net (SimNet) on base training set, which feeds in two images and outputs the semantic similarity. Secondly, we apply the trained SimNet to obtain the semantic similarities among web images. In this way, the similarity is transferred from base categories to novel categories. Based on the transferred similarities, we design two simple yet effective methods to assist in learning the main classifier on novel training set. (1) Sample weighting (i.e., assign small weights to the images dissimilar to others) reduces the impact of outliers (web images with incorrect labels) and thus alleviates the problem of noise overfitting. (2) Graph regularization (i.e., pull close the features of semantically similar samples) prevents the feature space from being disturbed by noisy labels. In addition, we propose to apply adversarial loss on SimNet to make it indistinguishable for base categories and novel categories, so that the transferability of similarity is strengthened.

3. Results

Extensive experiments on three fine-grained datasets have demonstrated the potential of our learning scenario and the effectiveness of our method. For qualitative analysis, on the one hand, the clean images are assigned with high weights, while the images belonging to outlier are assigned with low weights; on the other hand, the transferred similarities accurately portray the semantic relations among web images.

4. Experiment Codebase

4.1 Data

We provide the packages of CUB, Car, FGVC, and WebVision at Baidu Cloud (access code: BCMI).

The original packages are split by split -b 10G ../CUB.zip CUB.zip., thus we need merge by cat CUB.zip.a* > CUB.zip before decompression.

The ImageNet dataset is publicly available, and all data files are configured as:

├── CUB
├── Car
├── Air
├── WebVision
├── ImageNet:
  ├── train
      ├── ……
  ├── val
      ├── ……
  ├── ILSVRC2012_validation_ground_truth.txt
  ├── meta.mat
  ├── train_files.txt

Just employ --data_path ANY_PATH/CUB to specify the data dir.

4.2 Install

See requirement.txt.

4.3 Evaluation

The trained models are released as trained_models.zip at Baidu Cloud (access code: BCMI).

The command in _scripts/DATASET_NAME/eval.sh is used to evaluate the model.

4.4 Training

We provide the full scripts for CUB dataset in _scripts/CUB/ dir as an example.

For other datasets, just change the data path, i.e., --data_path ANY_PATH/WebVision.

Bibtex

If you find this work is useful for your research, please cite our paper using the following BibTeX [pdf] [supp] [arxiv]:

@inproceedings{SimTrans2021,
title={Weak-shot Fine-grained Classification via Similarity Transfer},
author={Chen, Junjie and Niu, Li and Liu, Liu and Zhang, Liqing},
booktitle={NeurIPS},
year={2021}}
Owner
BCMI
Center for Brain-Like Computing and Machine Intelligence, Shanghai Jiao Tong University.
BCMI
Text-to-Image generation

Generate vivid Images for Any (Chinese) text CogView is a pretrained (4B-param) transformer for text-to-image generation in general domain. Read our p

THUDM 1.3k Dec 29, 2022
Personals scripts using ageitgey/face_recognition

HOW TO USE pip3 install requirements.txt Add some pictures of known people in the folder 'people' : a) Create a folder called by the name of the perso

Antoine Bollengier 1 Jan 06, 2022
PyTorch implementation of the paper Dynamic Data Augmentation with Gating Networks

Dynamic Data Augmentation with Gating Networks This is an official PyTorch implementation of the paper Dynamic Data Augmentation with Gating Networks

九州大学 ヒューマンインタフェース研究室 3 Oct 26, 2022
Deploy pytorch classification model using Flask and Streamlit

Deploy pytorch classification model using Flask and Streamlit

Ben Seo 1 Nov 17, 2021
Vision Transformer and MLP-Mixer Architectures

Vision Transformer and MLP-Mixer Architectures Update (2.7.2021): Added the "When Vision Transformers Outperform ResNets..." paper, and SAM (Sharpness

Google Research 6.4k Jan 04, 2023
Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021)

TDEER (WIP) Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021) Overview TDEER is an e

Alipay 6 Dec 17, 2022
Code for "My(o) Armband Leaks Passwords: An EMG and IMU Based Keylogging Side-Channel Attack" paper

Myo Keylogging This is the source code for our paper My(o) Armband Leaks Passwords: An EMG and IMU Based Keylogging Side-Channel Attack by Matthias Ga

Secure Mobile Networking Lab 7 Jan 03, 2023
OpenIPDM is a MATLAB open-source platform that stands for infrastructures probabilistic deterioration model

Open-Source Toolbox for Infrastructures Probabilistic Deterioration Modelling OpenIPDM is a MATLAB open-source platform that stands for infrastructure

CIVML 0 Jan 20, 2022
PyTorch implementation for ComboGAN

ComboGAN This is our ongoing PyTorch implementation for ComboGAN. Code was written by Asha Anoosheh (built upon CycleGAN) [ComboGAN Paper] If you use

Asha Anoosheh 139 Dec 20, 2022
CM building dataset Timisoara

CM_building_dataset_Timisoara Date created: Febr-2020 The Timi\c{s}oara Building Dataset - TMBuD - is composed of 160 images with the resolution of 76

Orhei Ciprian 5 Sep 07, 2022
Deep Learning to Improve Breast Cancer Detection on Screening Mammography

Shield: This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Deep Learning to Improve Breast

Li Shen 305 Jan 03, 2023
(Py)TOD: Tensor-based Outlier Detection, A General GPU-Accelerated Framework

(Py)TOD: Tensor-based Outlier Detection, A General GPU-Accelerated Framework Background: Outlier detection (OD) is a key data mining task for identify

Yue Zhao 127 Jan 05, 2023
The (Official) PyTorch Implementation of the paper "Deep Extraction of Manga Structural Lines"

MangaLineExtraction_PyTorch The (Official) PyTorch Implementation of the paper "Deep Extraction of Manga Structural Lines" Usage model_torch.py [sourc

Miaomiao Li 82 Jan 02, 2023
Tensorflow 2.x implementation of Panoramic BlitzNet for object detection and semantic segmentation on indoor panoramic images.

Deep neural network for object detection and semantic segmentation on indoor panoramic images. The implementation is based on the papers:

Alejandro de Nova Guerrero 9 Nov 24, 2022
A Pytorch implementation of the multi agent deep deterministic policy gradients (MADDPG) algorithm

Multi-Agent-Deep-Deterministic-Policy-Gradients A Pytorch implementation of the multi agent deep deterministic policy gradients(MADDPG) algorithm This

Phil Tabor 159 Dec 28, 2022
Official Pytorch implementation of paper "Reverse Engineering of Generative Models: Inferring Model Hyperparameters from Generated Images"

Reverse_Engineering_GMs Official Pytorch implementation of paper "Reverse Engineering of Generative Models: Inferring Model Hyperparameters from Gener

100 Dec 18, 2022
Official Implementation of SWAD (NeurIPS 2021)

SWAD: Domain Generalization by Seeking Flat Minima (NeurIPS'21) Official PyTorch implementation of SWAD: Domain Generalization by Seeking Flat Minima.

Junbum Cha 97 Dec 20, 2022
Official pytorch implementation of the paper: "SinGAN: Learning a Generative Model from a Single Natural Image"

SinGAN Project | Arxiv | CVF | Supplementary materials | Talk (ICCV`19) Official pytorch implementation of the paper: "SinGAN: Learning a Generative M

Tamar Rott Shaham 3.2k Dec 25, 2022
Code for our EMNLP 2021 paper "Learning Kernel-Smoothed Machine Translation with Retrieved Examples"

KSTER Code for our EMNLP 2021 paper "Learning Kernel-Smoothed Machine Translation with Retrieved Examples" [paper]. Usage Download the processed datas

jiangqn 23 Nov 24, 2022
Fast and customizable reconnaissance workflow tool based on simple YAML based DSL.

Fast and customizable reconnaissance workflow tool based on simple YAML based DSL, with support of notifications and distributed workload of that work

Américo Júnior 3 Mar 11, 2022