Awesome Graph Classification - A collection of important graph embedding, classification and representation learning papers with implementations.

Overview

Awesome Graph Classification

Awesome PRs Welcome License repo sizebenedekrozemberczki

A collection of graph classification methods, covering embedding, deep learning, graph kernel and factorization papers with reference implementations.

Relevant graph classification benchmark datasets are available [here].

Similar collections about community detection, classification/regression tree, fraud detection, Monte Carlo tree search, and gradient boosting papers with implementations.


Contents

  1. Matrix Factorization
  2. Spectral and Statistical Fingerprints
  3. Deep Learning
  4. Graph Kernels

License

Comments
  • Graph classification method from ICDM '19

    Graph classification method from ICDM '19

    Hi, thanks for maintaining such a comprehensive list of methods for graph-level machine learning. I am an author of the ICDM 2019 paper "Distribution of Node Embeddings as Multiresolution Features for Graphs" and was wondering if it could be included on this list?
    Overview: Derives a randomized feature map for a graph based on the distribution of its node embeddings in vector space. As the proposed technique is an explicit feature map, it probably fits in the section on "spectral and statistical fingerprints", but its theoretical underpinnings come from the graph kernel literature and so it might fit in that section instead. Won best student paper at ICDM 2019.
    Paper: [https://ieeexplore.ieee.org/document/8970922] Code: [https://github.com/GemsLab/RGM]

    opened by markheimann 3
  • Another graph paper

    Another graph paper

    You can also add to the list "Mapping Images to Scene Graphs with Permutation-Invariant Structured Prediction" from NeurIPS18.

    It's a novel graph architecture for mapping images to scene graphs using a permutation invariant property, which achieves a new state-of-the-art results on Visual Genome dataset.

    paper: https://arxiv.org/abs/1802.05451 code: https://github.com/shikorab/SceneGraph

    opened by roeiherz 3
  • Please add KDD 2019 paper, data, code

    Please add KDD 2019 paper, data, code

    Hi!

    Thank you for this awesome repository!

    Could you please add the following paper, code, and data link to the repository: Paper: Predicting Dynamic Embedding Trajectory in Temporal Interaction Networks Authors: Srijan Kumar, Xikun Zhang, Jure Leskovec Venue: ACM SIGKDD 2019 (Proceedings of the 25th ACM SIGKDD international conference on Knowledge discovery and data mining) Project page: http://snap.stanford.edu/jodie/ Code: https://github.com/srijankr/jodie/ All datasets: http://snap.stanford.edu/jodie/

    Many thanks, Srijan

    opened by srijankr 3
  • Graph classification based on topological features

    Graph classification based on topological features

    Hi there,

    please add our paper “A Persistent Weisfeiler–Lehman Procedure for Graph Classification” as well to this repository:

    Paper: http://proceedings.mlr.press/v97/rieck19a/rieck19a.pdf Code: https://github.com/BorgwardtLab/P-WL

    Best, Bastian

    opened by Pseudomanifold 2
  • Updates of the library py-graph

    Updates of the library py-graph

    Hi, I am the author of the library py-graph. Thanks a lot for including our library! Just to inform you that we updated our library and now there are implementations for 8 graph kernels. We also upload our library to PyPI. Thanks!

    opened by jajupmochi 2
  • Missing SAGPool

    Missing SAGPool

    Attention-based pooling operator without having to learn n^2 cluster-assignment matrix as in DiffPool. paper: https://arxiv.org/abs/1904.08082 code: https://github.com/inyeoplee77/SAGPool

    opened by choltz95 2
  • Add a paper regarding to semi-supervised heterogenous graph embedding

    Add a paper regarding to semi-supervised heterogenous graph embedding

    hi, i'm trying to add our paper on semi-supervised heterogenous graph embedding to your awesome repository. it was cited 60+ times. hope you accept the pull request. thanks!

    opened by chentingpc 2
  • KDD2020 Paper

    KDD2020 Paper

    Hi,

    in our KDD2020 work we solve a graph classification problem with nice results!

    Paper: https://dl.acm.org/doi/10.1145/3394486.3403383 Code: https://github.com/tlancian/contrast-subgraph

    Would you add it to the repo?

    Thank you, Tommaso

    opened by tlancian 1
  • some other graph level classification papers

    some other graph level classification papers

    Hi, those are some other graph level classification papers for your information Graph Kernel: "A Graph Kernel Based on the Jensen-Shannon Representation Alignment" IJCAI 2015 Lu Bai, Zhihong Zhang, Chaoyan Wang, Xiao Bai, Edwin R. Hancock paper: http://ijcai.org/Proceedings/15/Papers/468.pdf code: https://github.com/baiuoy/Matlab-code-JS-alignment-kernel-IJCAI-2015

    “An Aligned Subtree Kernel for Weighted Graphs” ICML 2015 Lu Bai, Luca Rossi, Zhihong Zhang, Edwin R. Hancock paper: http://proceedings.mlr.press/v37/bai15.pdf code will be released soon

    Deep Learning: "Learning Aligned-Spatial Graph Convolutional Networks for Graph Classification" ECML-PKDD 2019 Lu Bai, Yuhang Jiao, Lixin Cui, Edwin R. Hancock paper: https://arxiv.org/abs/1904.04238 code: https://github.com/baiuoy/ASGCN_ECML-PKDD2019 (will be released soon)

    opened by David-AJ 1
  • Add Ego-CNN (ICML'19) and fix 1 typo

    Add Ego-CNN (ICML'19) and fix 1 typo

    Hi, thanks for this awesome repo on graph classification. Please help review the PR. I'd like to add our paper and help clarify 1 workshop paper.

    Thanks, Ruochun

    opened by rctzeng 1
  • A Simple Yet Effective Baseline for Non-Attribute Graph Classification

    A Simple Yet Effective Baseline for Non-Attribute Graph Classification

    Hi,

    Thank you for your paper list. I am the author of the paper A Simple Yet Effective Baseline for Non-Attribute Graph Classification. It has been accepted by ICLR 2019 graph representation learning workshop (https://rlgm.github.io/). Would you like to update the record? Thanks!

    Best, Chen

    opened by Chen-Cai-OSU 1
Releases(v_00001)
Owner
Benedek Rozemberczki
Machine Learning Engineer at AstraZeneca | PhD from The University of Edinburgh.
Benedek Rozemberczki
Parsing, analyzing, and comparing source code across many languages

Semantic semantic is a Haskell library and command line tool for parsing, analyzing, and comparing source code. In a hurry? Check out our documentatio

GitHub 8.6k Dec 28, 2022
PyTorch implementation of Densely Connected Time Delay Neural Network

Densely Connected Time Delay Neural Network PyTorch implementation of Densely Connected Time Delay Neural Network (D-TDNN) in our paper "Densely Conne

Ya-Qi Yu 64 Oct 11, 2022
Domain Generalization with MixStyle, ICLR'21.

MixStyle This repo contains the code of our ICLR'21 paper, "Domain Generalization with MixStyle". The OpenReview link is https://openreview.net/forum?

Kaiyang 208 Dec 28, 2022
Use tensorflow to implement a Deep Neural Network for real time lane detection

LaneNet-Lane-Detection Use tensorflow to implement a Deep Neural Network for real time lane detection mainly based on the IEEE IV conference paper "To

MaybeShewill-CV 1.9k Jan 08, 2023
Springer Link Download Module for Python

♞ pupalink A simple Python module to search and download books from SpringerLink. 🧪 This project is still in an early stage of development. Expect br

Pupa Corp. 18 Nov 21, 2022
Code for models used in Bashiri et al., "A Flow-based latent state generative model of neural population responses to natural images".

A Flow-based latent state generative model of neural population responses to natural images Code for "A Flow-based latent state generative model of ne

Sinz Lab 5 Aug 26, 2022
YOLOv7 - Framework Beyond Detection

🔥🔥🔥🔥 YOLO with Transformers and Instance Segmentation, with TensorRT acceleration! 🔥🔥🔥

JinTian 3k Jan 01, 2023
PyTorch-centric library for evaluating and enhancing the robustness of AI technologies

Responsible AI Toolbox A library that provides high-quality, PyTorch-centric tools for evaluating and enhancing both the robustness and the explainabi

24 Dec 22, 2022
ZeroVL - The official implementation of ZeroVL

This repository contains source code necessary to reproduce the results presente

31 Nov 04, 2022
[CVPR 2021] Unsupervised 3D Shape Completion through GAN Inversion

ShapeInversion Paper Junzhe Zhang, Xinyi Chen, Zhongang Cai, Liang Pan, Haiyu Zhao, Shuai Yi, Chai Kiat Yeo, Bo Dai, Chen Change Loy "Unsupervised 3D

100 Dec 22, 2022
MLP-Like Vision Permutator for Visual Recognition (PyTorch)

Vision Permutator: A Permutable MLP-Like Architecture for Visual Recognition (arxiv) This is a Pytorch implementation of our paper. We present Vision

Qibin (Andrew) Hou 162 Nov 28, 2022
This program creates a formatted excel file which highlights the undervalued stock according to Graham's number.

Over-and-Undervalued-Stocks Of Nepse Using Graham's Number Scrap the latest data using different websites and creates a formatted excel file that high

6 May 03, 2022
DynaTune: Dynamic Tensor Program Optimization in Deep Neural Network Compilation

DynaTune: Dynamic Tensor Program Optimization in Deep Neural Network Compilation This repository is the implementation of DynaTune paper. This folder

4 Nov 02, 2022
Semi-supervised Stance Detection of Tweets Via Distant Network Supervision

SANDS This is an annonymous repository containing code and data necessary to reproduce the results published in "Semi-supervised Stance Detection of T

2 Sep 22, 2022
Unofficial implementation of Point-Unet: A Context-Aware Point-Based Neural Network for Volumetric Segmentation

Point-Unet This is an unofficial implementation of the MICCAI 2021 paper Point-Unet: A Context-Aware Point-Based Neural Network for Volumetric Segment

Namt0d 9 Dec 07, 2022
Use unsupervised and supervised learning to predict stocks

AIAlpha: Multilayer neural network architecture for stock return prediction This project is meant to be an advanced implementation of stacked neural n

Vivek Palaniappan 1.5k Jan 06, 2023
Pre-trained Deep Learning models and demos (high quality and extremely fast)

OpenVINO™ Toolkit - Open Model Zoo repository This repository includes optimized deep learning models and a set of demos to expedite development of hi

OpenVINO Toolkit 3.4k Dec 31, 2022
The 3rd place solution for competition

The 3rd place solution for competition "Lyft Motion Prediction for Autonomous Vehicles" at Kaggle Team behind this solution: Artsiom Sanakoyeu [Homepa

Artsiom 104 Nov 22, 2022
MohammadReza Sharifi 27 Dec 13, 2022
Reproduces ResNet-V3 with pytorch

ResNeXt.pytorch Reproduces ResNet-V3 (Aggregated Residual Transformations for Deep Neural Networks) with pytorch. Tried on pytorch 1.6 Trains on Cifar

Pau Rodriguez 481 Dec 23, 2022