Code for paper ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization in the Loop.

Related tags

Deep LearningWLDO
Overview

Who Left the Dogs Out?

Evaluation and demo code for our ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization in the Loop.

Disclaimer

Please note, this repository is in beta while I make bug fixes etc.

Install

Clone the repository with submodules:

git clone --recurse-submodules https://github.com/benjiebob/WLDO

For segmentation decoding, install pycocotools python -m pip install "git+https://github.com/philferriere/cocoapi.git#subdirectory=PythonAPI"

Datasets

To use the StanfordExtra dataset, you will need to download the .json file via the repository.

Please ensure you have StanfordExtra_v12 installed, which we released 1 Feb 2021.

You may also wish to evaluate the Animal Pose Dataset. If so, download all of the dog images into data/animal_pose/images. For example, an image path should look like: data/animal_pose/images/2007_000063.jpg. We have reformatted the annotation file and enclose it in this repository data/animal_pose/animal_pose_data.json.

Splits

The train/validation/test splits used for our ECCV 2020 submission are contained in the data/StanfordExtra_v12 repository and under the data/animal_pose folder.

Pretrained model

Please download our pretrained model and place underneath data/pretrained/3501_00034_betas_v4.pth.

Quickstart

Eval

To evaluate the performance of the model on the StanfordExtra dataset, run eval.py:

cd wldo_regressor
python eval.py --dataset stanford

You can also run on the animal_pose dataset

python eval.py --dataset animal_pose

Results

Dataset IOU PCK @ 0.15
Avg Legs Tail Ears Face
StanfordExtra 74.2 78.8 76.4 63.9 78.1 92.1
Animal Pose 67.5 67.6 60.4 62.7 86.0 86.7

Note that we have recently updated the tables in the arxiv version of our paper to account for some fixed dataset annotations and to use an improved version of the PCK metric. More details can be found in the paper.

Demo

To run the model on a series of images, place the images in a directory, and call the script demo.py. To see an example of this working, run demo.py and it will use the images in example_imgs:

cd wldo_regressor
python demo.py

Related Work

This repository owes a great deal to the following works and authors:

  • SMALify; Biggs et al. provided an energy minimization framework for fitting to animal video/images. A version of this was used as a baseline in this paper.
  • SMAL; Zuffi et al. designed the SMAL deformable quadruped template model and have provided me with wonderful advice/guidance throughout my PhD journey.
  • SMALST; Zuffi et al. provided PyTorch implementations of the SMAL skinning functions which have been used here.
  • SMPLify; Bogo et al. provided the basis for our original ChumPY implementation.

Acknowledgements

If you make use of this code, please cite the following paper:

@inproceedings{biggs2020wldo,
  title={{W}ho left the dogs out?: {3D} animal reconstruction with expectation maximization in the loop},
  author={Biggs, Benjamin and Boyne, Oliver and Charles, James and Fitzgibbon, Andrew and Cipolla, Roberto},
  booktitle={ECCV},
  year={2020}
}

Contribute

Please create a pull request or submit an issue if you would like to contribute.

Licensing

(c) Benjamin Biggs, Oliver Boyne, Andrew Fitzgibbon and Roberto Cipolla. Department of Engineering, University of Cambridge 2020

By downloading this dataset, you agree to the Creative Commons Attribution-NonCommercial 4.0 International license. This license allows users to use, share and adapt the dataset, so long as credit is given to the authors (e.g. by citation) and the dataset is not used for any commercial purposes.

THIS SOFTWARE AND ANNOTATIONS ARE PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Owner
Benjamin Biggs
Benjamin Biggs
Keras attention models including botnet,CoaT,CoAtNet,CMT,cotnet,halonet,resnest,resnext,resnetd,volo,mlp-mixer,resmlp,gmlp,levit

Keras_cv_attention_models Keras_cv_attention_models Usage Basic Usage Layers Model surgery AotNet ResNetD ResNeXt ResNetQ BotNet VOLO ResNeSt HaloNet

319 Dec 28, 2022
3DIAS: 3D Shape Reconstruction with Implicit Algebraic Surfaces (ICCV 2021)

3DIAS_Pytorch This repository contains the official code to reproduce the results from the paper: 3DIAS: 3D Shape Reconstruction with Implicit Algebra

Mohsen Yavartanoo 21 Dec 12, 2022
Implementation of Sequence Generative Adversarial Nets with Policy Gradient

SeqGAN Requirements: Tensorflow r1.0.1 Python 2.7 CUDA 7.5+ (For GPU) Introduction Apply Generative Adversarial Nets to generating sequences of discre

Lantao Yu 2k Dec 29, 2022
The official repository for BaMBNet

BaMBNet-Pytorch Paper

Junjun Jiang 18 Dec 04, 2022
This is the source code for our ICLR2021 paper: Adaptive Universal Generalized PageRank Graph Neural Network.

GPRGNN This is the source code for our ICLR2021 paper: Adaptive Universal Generalized PageRank Graph Neural Network. Hidden state feature extraction i

Jianhao 92 Jan 03, 2023
We propose a new method for effective shadow removal by regarding it as an exposure fusion problem.

Auto-exposure fusion for single-image shadow removal We propose a new method for effective shadow removal by regarding it as an exposure fusion proble

Qing Guo 146 Dec 31, 2022
PyTorch implementation of PSPNet segmentation network

pspnet-pytorch PyTorch implementation of PSPNet segmentation network Original paper Pyramid Scene Parsing Network Details This is a slightly different

Roman Trusov 532 Dec 29, 2022
Hand-distance-measurement-game - Hand Distance Measurement Game

Hand Distance Measurement Game This is program is made to calculate the distance

Priyansh 2 Jan 12, 2022
The 1st place solution of track2 (Vehicle Re-Identification) in the NVIDIA AI City Challenge at CVPR 2021 Workshop.

AICITY2021_Track2_DMT The 1st place solution of track2 (Vehicle Re-Identification) in the NVIDIA AI City Challenge at CVPR 2021 Workshop. Introduction

Hao Luo 91 Dec 21, 2022
Official code release for "GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis"

GRAF This repository contains official code for the paper GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis. You can find detailed usage i

349 Dec 29, 2022
COVID-Net Open Source Initiative

The COVID-Net models provided here are intended to be used as reference models that can be built upon and enhanced as new data becomes available

Linda Wang 1.1k Dec 26, 2022
Official codebase for Pretrained Transformers as Universal Computation Engines.

universal-computation Overview Official codebase for Pretrained Transformers as Universal Computation Engines. Contains demo notebook and scripts to r

Kevin Lu 210 Dec 28, 2022
OrienMask: Real-time Instance Segmentation with Discriminative Orientation Maps

OrienMask This repository implements the framework OrienMask for real-time instance segmentation. It achieves 34.8 mask AP on COCO test-dev at the spe

45 Dec 13, 2022
NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.

The source code is temporariy removed, as we are solving potential copyright and license issues with GRANSO (http://www.timmitchell.com/software/GRANS

SUN Group @ UMN 28 Aug 03, 2022
An official source code for "Augmentation-Free Self-Supervised Learning on Graphs"

Augmentation-Free Self-Supervised Learning on Graphs An official source code for Augmentation-Free Self-Supervised Learning on Graphs paper, accepted

Namkyeong Lee 59 Dec 01, 2022
Quickly comparing your image classification models with the state-of-the-art models (such as DenseNet, ResNet, ...)

Image Classification Project Killer in PyTorch This repo is designed for those who want to start their experiments two days before the deadline and ki

349 Dec 08, 2022
Deeprl - Standard DQN and dueling network for simple games

DeepRL This code implements the standard deep Q-learning and dueling network with experience replay (memory buffer) for playing simple games. DQN algo

Yao Zhou 6 Apr 12, 2020
Data visualization app for H&M competition in kaggle

handm_data_visualize_app Data visualization app by streamlit for H&M competition in kaggle. competition page: https://www.kaggle.com/competitions/h-an

Kyohei Uto 12 Apr 30, 2022
Learning Time-Critical Responses for Interactive Character Control

Learning Time-Critical Responses for Interactive Character Control Abstract This code implements the paper Learning Time-Critical Responses for Intera

Movement Research Lab 227 Dec 31, 2022