Code for paper ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization in the Loop.

Related tags

Deep LearningWLDO
Overview

Who Left the Dogs Out?

Evaluation and demo code for our ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization in the Loop.

Disclaimer

Please note, this repository is in beta while I make bug fixes etc.

Install

Clone the repository with submodules:

git clone --recurse-submodules https://github.com/benjiebob/WLDO

For segmentation decoding, install pycocotools python -m pip install "git+https://github.com/philferriere/cocoapi.git#subdirectory=PythonAPI"

Datasets

To use the StanfordExtra dataset, you will need to download the .json file via the repository.

Please ensure you have StanfordExtra_v12 installed, which we released 1 Feb 2021.

You may also wish to evaluate the Animal Pose Dataset. If so, download all of the dog images into data/animal_pose/images. For example, an image path should look like: data/animal_pose/images/2007_000063.jpg. We have reformatted the annotation file and enclose it in this repository data/animal_pose/animal_pose_data.json.

Splits

The train/validation/test splits used for our ECCV 2020 submission are contained in the data/StanfordExtra_v12 repository and under the data/animal_pose folder.

Pretrained model

Please download our pretrained model and place underneath data/pretrained/3501_00034_betas_v4.pth.

Quickstart

Eval

To evaluate the performance of the model on the StanfordExtra dataset, run eval.py:

cd wldo_regressor
python eval.py --dataset stanford

You can also run on the animal_pose dataset

python eval.py --dataset animal_pose

Results

Dataset IOU PCK @ 0.15
Avg Legs Tail Ears Face
StanfordExtra 74.2 78.8 76.4 63.9 78.1 92.1
Animal Pose 67.5 67.6 60.4 62.7 86.0 86.7

Note that we have recently updated the tables in the arxiv version of our paper to account for some fixed dataset annotations and to use an improved version of the PCK metric. More details can be found in the paper.

Demo

To run the model on a series of images, place the images in a directory, and call the script demo.py. To see an example of this working, run demo.py and it will use the images in example_imgs:

cd wldo_regressor
python demo.py

Related Work

This repository owes a great deal to the following works and authors:

  • SMALify; Biggs et al. provided an energy minimization framework for fitting to animal video/images. A version of this was used as a baseline in this paper.
  • SMAL; Zuffi et al. designed the SMAL deformable quadruped template model and have provided me with wonderful advice/guidance throughout my PhD journey.
  • SMALST; Zuffi et al. provided PyTorch implementations of the SMAL skinning functions which have been used here.
  • SMPLify; Bogo et al. provided the basis for our original ChumPY implementation.

Acknowledgements

If you make use of this code, please cite the following paper:

@inproceedings{biggs2020wldo,
  title={{W}ho left the dogs out?: {3D} animal reconstruction with expectation maximization in the loop},
  author={Biggs, Benjamin and Boyne, Oliver and Charles, James and Fitzgibbon, Andrew and Cipolla, Roberto},
  booktitle={ECCV},
  year={2020}
}

Contribute

Please create a pull request or submit an issue if you would like to contribute.

Licensing

(c) Benjamin Biggs, Oliver Boyne, Andrew Fitzgibbon and Roberto Cipolla. Department of Engineering, University of Cambridge 2020

By downloading this dataset, you agree to the Creative Commons Attribution-NonCommercial 4.0 International license. This license allows users to use, share and adapt the dataset, so long as credit is given to the authors (e.g. by citation) and the dataset is not used for any commercial purposes.

THIS SOFTWARE AND ANNOTATIONS ARE PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Owner
Benjamin Biggs
Benjamin Biggs
Starter Code for VALUE benchmark

StarterCode for VALUE Benchmark This is the starter code for VALUE Benchmark [website], [paper]. This repository currently supports all baseline model

VALUE Benchmark 73 Dec 09, 2022
Source code for "Pack Together: Entity and Relation Extraction with Levitated Marker"

PL-Marker Source code for Pack Together: Entity and Relation Extraction with Levitated Marker. Quick links Overview Setup Install Dependencies Data Pr

THUNLP 173 Dec 30, 2022
ESL: Event-based Structured Light

ESL: Event-based Structured Light Video (click on the image) This is the code for the 2021 3DV paper ESL: Event-based Structured Light by Manasi Mugli

Robotics and Perception Group 29 Oct 24, 2022
Parameter-ensemble-differential-evolution - Shows how to do parameter ensembling using differential evolution.

Ensembling parameters with differential evolution This repository shows how to ensemble parameters of two trained neural networks using differential e

Sayak Paul 9 May 04, 2022
The Easy-to-use Dialogue Response Selection Toolkit for Researchers

Easy-to-use toolkit for retrieval-based Chatbot Recent Activity Our released RRS corpus can be found here. Our released BERT-FP post-training checkpoi

GMFTBY 32 Nov 13, 2022
Code accompanying the paper on "An Empirical Investigation of Domain Generalization with Empirical Risk Minimizers" published at NeurIPS, 2021

Code for "An Empirical Investigation of Domian Generalization with Empirical Risk Minimizers" (NeurIPS 2021) Motivation and Introduction Domain Genera

Meta Research 15 Dec 27, 2022
Official PyTorch implementation of RobustNet (CVPR 2021 Oral)

RobustNet (CVPR 2021 Oral): Official Project Webpage Codes and pretrained models will be released soon. This repository provides the official PyTorch

Sungha Choi 173 Dec 21, 2022
The code for paper "Contrastive Spatio-Temporal Pretext Learning for Self-supervised Video Representation" which is accepted by AAAI 2022

Contrastive Spatio Temporal Pretext Learning for Self-supervised Video Representation (AAAI 2022) The code for paper "Contrastive Spatio-Temporal Pret

8 Jun 30, 2022
Finetuning Pipeline

KLUE Baseline Korean(한국어) KLUE-baseline contains the baseline code for the Korean Language Understanding Evaluation (KLUE) benchmark. See our paper fo

74 Dec 13, 2022
Code for our TKDE paper "Understanding WeChat User Preferences and “Wow” Diffusion"

wechat-wow-analysis Understanding WeChat User Preferences and “Wow” Diffusion. Fanjin Zhang, Jie Tang, Xueyi Liu, Zhenyu Hou, Yuxiao Dong, Jing Zhang,

18 Sep 16, 2022
Graph Robustness Benchmark: A scalable, unified, modular, and reproducible benchmark for evaluating the adversarial robustness of Graph Machine Learning.

Homepage | Paper | Datasets | Leaderboard | Documentation Graph Robustness Benchmark (GRB) provides scalable, unified, modular, and reproducible evalu

THUDM 66 Dec 22, 2022
Breaching - Breaching privacy in federated learning scenarios for vision and text

Breaching - A Framework for Attacks against Privacy in Federated Learning This P

Jonas Geiping 139 Jan 03, 2023
Python implementation of ADD: Frequency Attention and Multi-View based Knowledge Distillation to Detect Low-Quality Compressed Deepfake Images, AAAI2022.

ADD: Frequency Attention and Multi-View based Knowledge Distillation to Detect Low-Quality Compressed Deepfake Images Binh M. Le & Simon S. Woo, "ADD:

2 Oct 24, 2022
Codes for building and training the neural network model described in Domain-informed neural networks for interaction localization within astroparticle experiments.

Domain-informed Neural Networks Codes for building and training the neural network model described in Domain-informed neural networks for interaction

DIDACTS 0 Dec 13, 2021
Audio Visual Emotion Recognition using TDA

Audio Visual Emotion Recognition using TDA RAVDESS database with two datasets analyzed: Video and Audio dataset: Audio-Dataset: https://www.kaggle.com

Combinatorial Image Analysis research group 3 May 11, 2022
TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning

TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning Authors: Yixuan Su, Fangyu Liu, Zaiqiao Meng, Lei Shu, Ehsan Shareghi, and Nig

Yixuan Su 79 Nov 04, 2022
an implementation of softmax splatting for differentiable forward warping using PyTorch

softmax-splatting This is a reference implementation of the softmax splatting operator, which has been proposed in Softmax Splatting for Video Frame I

Simon Niklaus 338 Dec 28, 2022
Unofficial pytorch implementation of 'Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization'

pytorch-AdaIN This is an unofficial pytorch implementation of a paper, Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization [Hua

Naoto Inoue 873 Jan 06, 2023
Image Data Augmentation in Keras

Image data augmentation is a technique that can be used to artificially expand the size of a training dataset by creating modified versions of images in the dataset.

Grace Ugochi Nneji 3 Feb 15, 2022
A PyTorch Toolbox for Face Recognition

FaceX-Zoo FaceX-Zoo is a PyTorch toolbox for face recognition. It provides a training module with various supervisory heads and backbones towards stat

JDAI-CV 1.6k Jan 06, 2023