Audio Visual Emotion Recognition using TDA

Overview

Audio Visual Emotion Recognition using TDA

RAVDESS database with two datasets analyzed: Video and Audio dataset:

Audio-Dataset: https://www.kaggle.com/uwrfkaggler/ravdess-emotional-speech-audio

Video-Dataset: https://zenodo.org/record/1188976#.X7yio2hKjIU

The Final Master project PDF document is available here.

Folder Video_Dataset:

Dataset used is available in this url https://zenodo.org/record/1188976#.X7yio2hKjIU The algorithm works in this order:

  1. delaunay_construction.m: The first step of the algorithm in order to build the Delaunay triangulation in every video associated from dataset, remind that we have videos of 24 people and for each person 60 videos associated to 8 emotions. The first step is to defines the pathdata where it is the dataset address, that it is in format csv with the landmark point of the face. The coordinate of point X is is between position 2:297 and Y from 138:416 return the Delaunay_base, the struct that we will use in the code.

  2. complex_filtration.m: After get the delaunay_construction, we apply complex_filtration(Delaunay). The input is the Delaunay triangulation, in this code we built the complexes using the triangulation, taking the edges which form the squares and used them to form the square in every frame. We are working with 9 frames and this function calls the filtration function. Then, this function the return the complex asociated to each video, and the index position where each 3-cell is formed in the complex

2.1. filtrations.m This function obtains 8 border simplicial complexes filtered, from 4 view directions, 2 by each direction.We applied a set of function in order to get the different complex, as you can see the funcion return Complex X in the direction of axis X, Complex X in direction of Y, Complex XY, Complex YX in diagonal direction and the same complex with the order inverted.

2.2. complex_wtsquare.m In this function we are going to split the complexes which form every cell to see the features which born and died in the same square on the complex.

  1. WORKFLOW.m One time that we have the complexes build, we are going to apply the Incremental Algorithm (Persistence_new) used in this thesis, the Incremental algorithm was implemented in C++ using differente topology libraries which offer this language. Then we get the barcode or persistence diagram associated to each filter complex obtained at begining. In this function we apply also the function (per_entropy) to summarise the information from the persistence diagram

Load each complex and its index and apply:

3.1 complex2matrix.py: converts the complex obtained for the ATR model applied in matricial way as we explained on the thesis(page 50).

3.2 Persistence_new: ATR model defined in C++ to calculate the persisten homology and get the barcode or persistence diagrams associated with each filtration of the complex. The psuedo-code of the algorithm you will find on the thesis.

3.3 create_matrix.m: Built the different matrix based on persistence value to classify.

  1. experiment: the first experiment done based on the entropy values of video, but it sets each filtration compex that we get, then for that we worked with vector of eight elements associated to each filtration. Later this matrix is splitted in training and test set in order to use APP Classificator from Matlab and gets the accuracy.

  2. experiment3: Experiment that construct the matrix with the information of each persisten value associate with one filtration of the complex calculated. Later this matrix is splitted in training and test set in order to use APP Classificator from Matlab and gets the accuracy.

  3. feature24_vector.m: experiment done considering a vector of 24 features for each person. in this experiment we dont get good results.

Folder Audio Dataset:

In this url yo can finde the Audio-Dataset used for this implementation, the formal of the files are in .wav: https://www.kaggle.com/uwrfkaggler/ravdess-emotional-speech-audio

Experiment 1

  1. work_flow.py focuses on the first experiment, load data that will be used in the script, and initialize the dataframe to fill.

1.1 test.py using function emotions to get the embedder and duration in seconds of each audio signal. Read the audio and create the time array (timeline), resample the signal, get the optimal parameter delay, apply the emmbedding algorithm

1.2 get_parameters.py function to get the optimal parameter for taken embedding, which contains datDelayInformation for mutual information, false_nearest_neighours for embedding dimension.

1.3 TakensEmbedding: This function returns the Takens embedding of data with a delay into a dimension

1.4 per_entropy.py: Computes the persistence entropy of a set of intervals according to the diagrama obtained.

1.5 get_diagramas.py used to apply Vietoris-Rips filter and get the persisten_entropy values.

  1. machine_learning.py is used to define classification techniques in the set of entropy values. Create training and test splits. Import the KNeighborsClassifier from library. The parameter K is to plot in graph with corresponding error rate for dataset and calculate the mean of error for all the predicted values where K ranges from 1 to 40.

Experment 2

  1. Work_flow2.py: Second experiment, using function emotions_second to obtain the resampled signal, get_diag2 from test.py to calculates the Vietoris-Rips filter.

  2. machine_learning_second: To construct a distance matrix of persistence diagrams (Bottleneck distance). Upload the csv prueba5.csv that contains the label of the emotion associated to each rows of the matrix. Create the fake data matrix: just the indices of the timeseries. Import the KNeighborsClassifier from library. For evaluating the algorithm, confusion matrix, precision, recall and f1 score are the most commonly used. Testing different classifier to see what is the best one. GaussianNB; DecisionTreeClassifier, knn and SVC.

4.1 my_dist: To get the distance bottleneck between diagrams, function that we use to built the matrix of distance, that will be the input of the KNN algorithm.

Classification folder

In this folder, the persistent entropy matrixes and classification experiments using neural networks for video-only and audiovideo datasets are provided.

Owner
Combinatorial Image Analysis research group
Combinatorial Image Analysis research group
Robotics environments

Robotics environments Details and documentation on these robotics environments are available in OpenAI's blog post and the accompanying technical repo

Farama Foundation 121 Dec 28, 2022
Unofficial reimplementation of ECAPA-TDNN for speaker recognition (EER=0.86 for Vox1_O when train only in Vox2)

Introduction This repository contains my unofficial reimplementation of the standard ECAPA-TDNN, which is the speaker recognition in VoxCeleb2 dataset

Tao Ruijie 277 Dec 31, 2022
Python package to add text to images, textures and different backgrounds

nider Python package for text images generation and watermarking Free software: MIT license Documentation: https://nider.readthedocs.io. nider is an a

Vladyslav Ovchynnykov 131 Dec 30, 2022
A tool to prepare websites grabbed with wget for local viewing.

makelocal A tool to prepare websites grabbed with wget for local viewing. exapmples After fetching xkcd.com with: wget -r -no-remove-listing -r -N --p

5 Apr 23, 2022
code for "AttentiveNAS Improving Neural Architecture Search via Attentive Sampling"

code for "AttentiveNAS Improving Neural Architecture Search via Attentive Sampling"

Facebook Research 94 Oct 26, 2022
Sequence-to-Sequence learning using PyTorch

Seq2Seq in PyTorch This is a complete suite for training sequence-to-sequence models in PyTorch. It consists of several models and code to both train

Elad Hoffer 514 Nov 17, 2022
Group Fisher Pruning for Practical Network Compression(ICML2021)

Group Fisher Pruning for Practical Network Compression (ICML2021) By Liyang Liu*, Shilong Zhang*, Zhanghui Kuang, Jing-Hao Xue, Aojun Zhou, Xinjiang W

Shilong Zhang 129 Dec 13, 2022
(ICCV 2021) Official code of "Dressing in Order: Recurrent Person Image Generation for Pose Transfer, Virtual Try-on and Outfit Editing."

Dressing in Order (DiOr) 👚 [Paper] 👖 [Webpage] 👗 [Running this code] The official implementation of "Dressing in Order: Recurrent Person Image Gene

Aiyu Cui 277 Dec 28, 2022
An implementation of DeepMind's Relational Recurrent Neural Networks in PyTorch.

relational-rnn-pytorch An implementation of DeepMind's Relational Recurrent Neural Networks (Santoro et al. 2018) in PyTorch. Relational Memory Core (

Sang-gil Lee 241 Nov 18, 2022
Find-Lane-Line - Use openCV library and Python to detect the road-lane-line

Find-Lane-Line This project is to use openCV library and Python to detect the road-lane-line. Data Pipeline Step one : Color Selection Step two : Cann

Kenny Cheng 3 Aug 17, 2022
Graph neural network message passing reframed as a Transformer with local attention

Adjacent Attention Network An implementation of a simple transformer that is equivalent to graph neural network where the message passing is done with

Phil Wang 49 Dec 28, 2022
Aligning Latent and Image Spaces to Connect the Unconnectable

About This repo contains the official implementation of the Aligning Latent and Image Spaces to Connect the Unconnectable paper. It is a GAN model whi

Ivan Skorokhodov 203 Jan 03, 2023
Capsule endoscopy detection DACON challenge

capsule_endoscopy_detection (DACON Challenge) Overview Yolov5, Yolor, mmdetection기반의 모델을 사용 (총 11개 모델 앙상블) 모든 모델은 학습 시 Pretrained Weight을 yolov5, yolo

MAILAB 11 Nov 25, 2022
Use AI to generate a optimized stock portfolio

Use AI, Modern Portfolio Theory, and Monte Carlo simulation's to generate a optimized stock portfolio that minimizes risk while maximizing returns. Ho

Greg James 30 Dec 22, 2022
Second-order Attention Network for Single Image Super-resolution (CVPR-2019)

Second-order Attention Network for Single Image Super-resolution (CVPR-2019) "Second-order Attention Network for Single Image Super-resolution" is pub

516 Dec 28, 2022
Face Recognition & AI Based Smart Attendance Monitoring System.

In today’s generation, authentication is one of the biggest problems in our society. So, one of the most known techniques used for authentication is h

Sagar Saha 1 Jan 14, 2022
Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds (CVPR 2022, Oral)

Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds (CVPR 2022, Oral) This is the official implementat

Yifan Zhang 259 Dec 25, 2022
A time series processing library

Timeseria Timeseria is a time series processing library which aims at making it easy to handle time series data and to build statistical and machine l

Stefano Alberto Russo 11 Aug 08, 2022
Awesome Remote Sensing Toolkit based on PaddlePaddle.

基于飞桨框架开发的高性能遥感图像处理开发套件,端到端地完成从训练到部署的全流程遥感深度学习应用。 最新动态 PaddleRS 即将发布alpha版本!欢迎大家试用 简介 PaddleRS是遥感科研院所、相关高校共同基于飞桨开发的遥感处理平台,支持遥感图像分类,目标检测,图像分割,以及变化检测等常用遥

146 Dec 11, 2022
This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, Krähenbühl and Koltun"

Learning to propose objects This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, Krähenbühl and Ko

Philipp Krähenbühl 90 Sep 10, 2021