Official implementation of the Neurips 2021 paper Searching Parameterized AP Loss for Object Detection.

Overview

Parameterized AP Loss

By Chenxin Tao, Zizhang Li, Xizhou Zhu, Gao Huang, Yong Liu, Jifeng Dai

This is the official implementation of the Neurips 2021 paper Searching Parameterized AP Loss for Object Detection.

Introduction

TL; DR.

Parameterized AP Loss aims to better align the network training and evaluation in object detection. It builds a unified formula for classification and localization tasks via parameterized functions, where the optimal parameters are searched automatically.

PAPLoss-intro

Introduction.

  • In evaluation of object detectors, Average Precision (AP) captures the performance of localization and classification sub-tasks simultaneously.

  • In training, due to the non-differentiable nature of the AP metric, previous methods adopt separate differentiable losses for the two sub-tasks. Such a mis-alignment issue may well lead to performance degradation.

  • Some existing works seek to design surrogate losses for the AP metric manually, which requires expertise and may still be sub-optimal.

  • In this paper, we propose Parameterized AP Loss, where parameterized functions are introduced to substitute the non-differentiable components in the AP calculation. Different AP approximations are thus represented by a family of parameterized functions in a unified formula. Automatic parameter search algorithm is then employed to search for the optimal parameters. Extensive experiments on the COCO benchmark demonstrate that the proposed Parameterized AP Loss consistently outperforms existing handcrafted losses.

PAPLoss-overview

Main Results with RetinaNet

Model Loss AP config
R50+FPN Focal Loss + L1 37.5 config
R50+FPN Focal Loss + GIoU 39.2 config
R50+FPN AP Loss + L1 35.4 config
R50+FPN aLRP Loss 39.0 config
R50+FPN Parameterized AP Loss 40.5 search config
training config

Main Results with Faster-RCNN

Model Loss AP config
R50+FPN Cross Entropy + L1 39.0 config
R50+FPN Cross Entropy + GIoU 39.1 config
R50+FPN aLRP Loss 40.7 config
R50+FPN AutoLoss-Zero 39.3 -
R50+FPN CSE-AutoLoss-A 40.4 -
R50+FPN Parameterized AP Loss 42.0 search config
training config

Installation

Our implementation is based on MMDetection and aLRPLoss, thanks for their codes!

Requirements

  • Linux or macOS
  • Python 3.6+
  • PyTorch 1.3+
  • CUDA 9.2+
  • GCC 5+
  • mmcv

Recommended configuration: Python 3.7, PyTorch 1.7, CUDA 10.1.

Install mmdetection with Parameterized AP Loss

a. create a conda virtual environment and activate it.

conda create -n paploss python=3.7 -y
conda activate paploss

b. install pytorch and torchvision following official instructions.

conda install pytorch=1.7.0 torchvision=0.8.0 cudatoolkit=10.1 -c pytorch

c. intall mmcv following official instruction. We recommend installing the pre-built mmcv-full. For example, if your CUDA version is 10.1 and pytorch version is 1.7.0, you could run:

pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu101/torch1.7.0/index.html

d. clone the repository.

git clone https://github.com/fundamentalvision/Parameterized-AP-Loss.git
cd Parameterized-AP-Loss

e. Install build requirements and then install mmdetection with Parameterized AP Loss. (We install our forked version of pycocotools via the github repo instead of pypi for better compatibility with our repo.)

pip install -r requirements/build.txt
pip install -v -e .  # or "python setup.py develop"

Usage

Dataset preparation

Please follow the official guide of mmdetection to organize the datasets. Note that we split the original training set into search training and validation sets with this split tool. The recommended data structure is as follows:

Parameterized-AP-Loss
├── mmdet
├── tools
├── configs
└── data
    └── coco
        ├── annotations
        |   ├── search_train2017.json
        |   ├── search_val2017.json
        |   ├── instances_train2017.json
        |   └── instances_val2017.json
        ├── train2017
        ├── val2017
        └── test2017

Searching for Parameterized AP Loss

The search command format is

./tools/dist_search.sh {CONFIG_NAME} {NUM_GPUS}

For example, the command for searching for RetinaNet with 8 GPUs is as follows:

./tools/dist_search.sh ./search_configs/cfg_search_retina.py 8

Training models with the provided parameters

After searching, copy the optimal parameters into the provided training config. We have also provided a set of parameters searched by us.

The re-training command format is

./tools/dist_train.sh {CONFIG_NAME} {NUM_GPUS}

For example, the command for training RetinaNet with 8 GPUs is as follows:

./tools/dist_train.sh ./configs/paploss/paploss_retinanet_r50_fpn.py 8

License

This project is released under the Apache 2.0 license.

Citing Parameterzied AP Loss

If you find Parameterized AP Loss useful in your research, please consider citing:

@inproceedings{tao2021searching,
  title={Searching Parameterized AP Loss for Object Detection},
  author={Tao, Chenxin and Li, Zizhang and Zhu, Xizhou and Huang, Gao and Liu, Yong and Dai, Jifeng},
  booktitle={Thirty-Fifth Conference on Neural Information Processing Systems},
  year={2021}
}
High performance distributed framework for training deep learning recommendation models based on PyTorch.

PERSIA (Parallel rEcommendation tRaining System with hybrId Acceleration) is developed by AI 340 Dec 30, 2022

A Python package for generating concise, high-quality summaries of a probability distribution

GoodPoints A Python package for generating concise, high-quality summaries of a probability distribution GoodPoints is a collection of tools for compr

Microsoft 28 Oct 10, 2022
Gauge equivariant mesh cnn

Geometric Mesh CNN The code in this repository is an implementation of the Gauge Equivariant Mesh CNN introduced in the paper Gauge Equivariant Mesh C

50 Dec 18, 2022
A simple pytorch pipeline for semantic segmentation.

SegmentationPipeline -- Pytorch A simple pytorch pipeline for semantic segmentation. Requirements : torch=1.9.0 tqdm albumentations=1.0.3 opencv-pyt

petite7 4 Feb 22, 2022
AbelNN: Deep Learning Python module from scratch

AbelNN: Deep Learning Python module from scratch I have implemented several neural networks from scratch using only Numpy. I have designed the module

Abel 2 Apr 12, 2022
AutoDeeplab / auto-deeplab / AutoML for semantic segmentation, implemented in Pytorch

AutoML for Image Semantic Segmentation Currently this repo contains the only working open-source implementation of Auto-Deeplab which, by the way out-

AI Necromancer 299 Dec 17, 2022
Improving adversarial robustness by a coupling rejection strategy

Adversarial Training with Rectified Rejection The code for the paper Adversarial Training with Rectified Rejection. Environment settings and libraries

Tianyu Pang 29 Jan 06, 2023
Defending against Model Stealing via Verifying Embedded External Features

Defending against Model Stealing Attacks via Verifying Embedded External Features This is the official implementation of our paper Defending against M

20 Dec 30, 2022
Unofficial PyTorch Implementation of AHDRNet (CVPR 2019)

AHDRNet-PyTorch This is the PyTorch implementation of Attention-guided Network for Ghost-free High Dynamic Range Imaging (CVPR 2019). The official cod

Yutong Zhang 4 Sep 08, 2022
This is an official implementation of CvT: Introducing Convolutions to Vision Transformers.

Introduction This is an official implementation of CvT: Introducing Convolutions to Vision Transformers. We present a new architecture, named Convolut

Bin Xiao 175 Jan 08, 2023
Tutel MoE: An Optimized Mixture-of-Experts Implementation

Project Tutel Tutel MoE: An Optimized Mixture-of-Experts Implementation. Supported Framework: Pytorch Supported GPUs: CUDA(fp32 + fp16), ROCm(fp32) Ho

Microsoft 344 Dec 29, 2022
Pytorch implement of 'Unmixing based PAN guided fusion network for hyperspectral imagery'

Pgnet There's a improved version compared with the publication in Tgrs with the modification in the deduction of the PDIN block: https://arxiv.org/abs

5 Jul 01, 2022
OpenMMLab Detection Toolbox and Benchmark

MMDetection is an open source object detection toolbox based on PyTorch. It is a part of the OpenMMLab project.

OpenMMLab 22.5k Jan 05, 2023
Detection of drones using their thermal signatures from thermal camera through YOLO-V3 based CNN with modifications to encapsulate drone motion

Drone Detection using Thermal Signature This repository highlights the work for night-time drone detection using a using an Optris PI Lightweight ther

Chong Yu Quan 6 Dec 31, 2022
a spacial-temporal pattern detection system for home automation

Argos a spacial-temporal pattern detection system for home automation. Based on OpenCV and Tensorflow, can run on raspberry pi and notify HomeAssistan

Angad Singh 133 Jan 05, 2023
Residual Dense Net De-Interlace Filter (RDNDIF)

Residual Dense Net De-Interlace Filter (RDNDIF) Work in progress deep de-interlacer filter. It is based on the architecture proposed by Bernasconi et

Louis 7 Feb 15, 2022
Deep Learning ❤️ OneFlow

Deep Learning with OneFlow made easy 🚀 ! Carefree? carefree-learn aims to provide CAREFREE usages for both users and developers. User Side Computer V

21 Oct 27, 2022
Springer Link Download Module for Python

♞ pupalink A simple Python module to search and download books from SpringerLink. 🧪 This project is still in an early stage of development. Expect br

Pupa Corp. 18 Nov 21, 2022
O-CNN: Octree-based Convolutional Neural Networks for 3D Shape Analysis

O-CNN This repository contains the implementation of our papers related with O-CNN. The code is released under the MIT license. O-CNN: Octree-based Co

Microsoft 607 Dec 28, 2022
Implementation of the paper Scalable Intervention Target Estimation in Linear Models (NeurIPS 2021), and the code to generate simulation results.

Scalable Intervention Target Estimation in Linear Models Implementation of the paper Scalable Intervention Target Estimation in Linear Models (NeurIPS

0 Oct 25, 2021