PCAfold is an open-source Python library for generating, analyzing and improving low-dimensional manifolds obtained via Principal Component Analysis (PCA).

Related tags

Data AnalysisPCAfold
Overview

License: MIT Documentation Status GitLab Binder

PCAfold is an open-source Python library for generating, analyzing and improving low-dimensional manifolds obtained via Principal Component Analysis (PCA). It incorporates a variety of data preprocessing tools (including data clustering and sampling), uses PCA as a dimensionality reduction technique and utilizes a novel approach to assess the quality of the obtained low-dimensional manifolds.

Citing PCAfold

PCAfold is published in the SoftwareX journal. If you use PCAfold in a scientific publication, you can cite the software as:

Zdybał, K., Armstrong, E., Parente, A. and Sutherland, J.C., 2020. PCAfold: Python software to generate, analyze and improve PCA-derived low-dimensional manifolds. SoftwareX, 12, p.100630.

or using BibTeX:

@article{pcafold2020,
title = "PCAfold: Python software to generate, analyze and improve PCA-derived low-dimensional manifolds",
journal = "SoftwareX",
volume = "12",
pages = "100630",
year = "2020",
issn = "2352-7110",
doi = "https://doi.org/10.1016/j.softx.2020.100630",
url = "http://www.sciencedirect.com/science/article/pii/S2352711020303435",
author = "Kamila Zdybał and Elizabeth Armstrong and Alessandro Parente and James C. Sutherland"
}

PCAfold documentation

PCAfold documentation contains a thorough user guide including equations, references and example code snippets. Numerous illustrative tutorials and demos are presented as well. The corresponding Jupyter notebooks can be found in the docs/tutorials directory.

Software architecture

A general overview for using PCAfold modules is presented in the diagram below:

Screenshot

Each module's functionalities can also be used as a standalone tool for performing a specific task and can easily combine with techniques outside of this software, such as K-Means algorithm or Artificial Neural Networks.

Installation

Dependencies

PCAfold requires python3.7 and the following packages:

  • Cython
  • matplotlib
  • numpy
  • scipy
  • termcolor

Build from source

Clone the PCAfold repository and move into the PCAfold directory created:

git clone http://gitlab.multiscale.utah.edu/common/PCAfold.git
cd PCAfold

Run the setup.py script as below to complete the installation:

python3.7 setup.py build_ext --inplace
python3.7 setup.py install

You are ready to import PCAfold!

Testing

To run regression tests from the base repo directory run:

python3.7 -m unittest discover

To switch verbose on, use the -v flag.

All tests should be passing. If any of the tests is failing and you can’t sort out why, please open an issue on GitLab.

Authors and contacts

Owner
Burn Research
Burn Research
Using approximate bayesian posteriors in deep nets for active learning

Bayesian Active Learning (BaaL) BaaL is an active learning library developed at ElementAI. This repository contains techniques and reusable components

ElementAI 687 Dec 25, 2022
PyPDC is a Python package for calculating asymptotic Partial Directed Coherence estimations for brain connectivity analysis.

Python asymptotic Partial Directed Coherence and Directed Coherence estimation package for brain connectivity analysis. Free software: MIT license Doc

Heitor Baldo 3 Nov 26, 2022
Vaex library for Big Data Analytics of an Airline dataset

Vaex-Big-Data-Analytics-for-Airline-data A Python notebook (ipynb) created in Jupyter Notebook, which utilizes the Vaex library for Big Data Analytics

Nikolas Petrou 1 Feb 13, 2022
WAL enables programmable waveform analysis.

This repro introcudes the Waveform Analysis Language (WAL). The initial paper on WAL will appear at ASPDAC'22 and can be downloaded here: https://www.

Institute for Complex Systems (ICS), Johannes Kepler University Linz 40 Dec 13, 2022
pandas: powerful Python data analysis toolkit

pandas is a Python package that provides fast, flexible, and expressive data structures designed to make working with "relational" or "labeled" data both easy and intuitive.

pandas 36.4k Jan 03, 2023
A meta plugin for processing timelapse data timepoint by timepoint in napari

napari-time-slicer A meta plugin for processing timelapse data timepoint by timepoint. It enables a list of napari plugins to process 2D+t or 3D+t dat

Robert Haase 2 Oct 13, 2022
Powerful, efficient particle trajectory analysis in scientific Python.

freud Overview The freud Python library provides a simple, flexible, powerful set of tools for analyzing trajectories obtained from molecular dynamics

Glotzer Group 195 Dec 20, 2022
Analyze the Gravitational wave data stored at LIGO/VIRGO observatories

Gravitational-Wave-Analysis This project showcases how to analyze the Gravitational wave data stored at LIGO/VIRGO observatories, using Python program

1 Jan 23, 2022
Data and code accompanying the paper Politics and Virality in the Time of Twitter

Politics and Virality in the Time of Twitter Data and code accompanying the paper Politics and Virality in the Time of Twitter. In specific: the code

Cardiff NLP 3 Jul 02, 2022
Statistical & Probabilistic Analysis of Store Sales, University Survey, & Manufacturing data

Statistical_Modelling Statistical & Probabilistic Analysis of Store Sales, University Survey, & Manufacturing data Statistical Methods for Decision Ma

Avnika Mehta 1 Jan 27, 2022
AptaMat is a simple script which aims to measure differences between DNA or RNA secondary structures.

AptaMAT Purpose AptaMat is a simple script which aims to measure differences between DNA or RNA secondary structures. The method is based on the compa

GEC UTC 3 Nov 03, 2022
PyChemia, Python Framework for Materials Discovery and Design

PyChemia, Python Framework for Materials Discovery and Design PyChemia is an open-source Python Library for materials structural search. The purpose o

Materials Discovery Group 61 Oct 02, 2022
Open-Domain Question-Answering for COVID-19 and Other Emergent Domains

Open-Domain Question-Answering for COVID-19 and Other Emergent Domains This repository contains the source code for an end-to-end open-domain question

7 Sep 27, 2022
Tkinter Izhikevich Neuron Model With Python

TKINTER IZHIKEVICH NEURON MODEL WITH PYTHON Hodgkin-Huxley Model It is a mathematical model for the generation and transmission of action potentials i

Rabia KOÇ 8 Jul 16, 2022
Learn machine learning the fun way, with Oracle and RedBull Racing

Red Bull Racing Analytics Hands-On Labs Introduction Are you interested in learning machine learning (ML)? How about doing this in the context of the

Oracle DevRel 55 Oct 24, 2022
Python package to transfer data in a fast, reliable, and packetized form.

pySerialTransfer Python package to transfer data in a fast, reliable, and packetized form.

PB2 101 Dec 07, 2022
Analyzing Covid-19 Outbreaks in Ontario

My group and I took Covid-19 outbreak statistics from ontario, and analyzed them to find different patterns and future predictions for the virus

Vishwaajeeth Kamalakkannan 0 Jan 20, 2022
BasstatPL is a package for performing different tabulations and calculations for descriptive statistics.

BasstatPL is a package for performing different tabulations and calculations for descriptive statistics. It provides: Frequency table constr

Angel Chavez 1 Oct 31, 2021
CRISP: Critical Path Analysis of Microservice Traces

CRISP: Critical Path Analysis of Microservice Traces This repo contains code to compute and present critical path summary from Jaeger microservice tra

Uber Research 110 Jan 06, 2023
A Python module for clustering creators of social media content into networks

sm_content_clustering A Python module for clustering creators of social media content into networks. Currently supports identifying potential networks

72 Dec 30, 2022